Design of High-Performance CMOS Voltage-Controlled Oscillators

Design of High-Performance CMOS Voltage-Controlled Oscillators PDF

Author: Liang Dai

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 170

ISBN-13: 1461511453

DOWNLOAD EBOOK →

Design of High-Performance CMOS Voltage-Controlled Oscillators presents a phase noise modeling framework for CMOS ring oscillators. The analysis considers both linear and nonlinear operation. It indicates that fast rail-to-rail switching has to be achieved to minimize phase noise. Additionally, in conventional design the flicker noise in the bias circuit can potentially dominate the phase noise at low offset frequencies. Therefore, for narrow bandwidth PLLs, noise up conversion for the bias circuits should be minimized. We define the effective Q factor (Qeff) for ring oscillators and predict its increase for CMOS processes with smaller feature sizes. Our phase noise analysis is validated via simulation and measurement results. The digital switching noise coupled through the power supply and substrate is usually the dominant source of clock jitter. Improving the supply and substrate noise immunity of a PLL is a challenging job in hostile environments such as a microprocessor chip where millions of digital gates are present.

Low Power VCO Design in CMOS

Low Power VCO Design in CMOS PDF

Author: Marc Tiebout

Publisher: Springer Science & Business Media

Published: 2006-01-25

Total Pages: 126

ISBN-13: 354029256X

DOWNLOAD EBOOK →

This work covers the design of CMOS fully integrated low power low phase noise voltage controlled oscillators for telecommunication or datacommuni- tion systems. The need for low power is obvious, as mobile wireless telecommunications are battery operated. As wireless telecommunication systems use oscillators in frequency synthesizers for frequency translation, the selectivity and signal to noise ratio of receivers and transmitters depend heavily on the low phase noise performance of the implemented oscillators. Datacommunication s- tems need low jitter, the time-domain equivalent of low phase noise, clocks for data detection and recovery. The power consumption is less critical. The need for multi-band and multi-mode systems pushes the high-integration of telecommunication systems. This is o?ered by sub-micron CMOS feat- ing digital ?exibility. The recent crisis in telecommunication clearly shows that mobile hand-sets became mass-market high-volume consumer products, where low-cost is of prime importance. This need for low-cost products - livens tremendously research towards CMOS alternatives for the bipolar or BiCMOS solutions in use today.

Transformer-Based Design Techniques for Oscillators and Frequency Dividers

Transformer-Based Design Techniques for Oscillators and Frequency Dividers PDF

Author: Howard Cam Luong

Publisher: Springer

Published: 2015-10-07

Total Pages: 205

ISBN-13: 3319158740

DOWNLOAD EBOOK →

This book provides in-depth coverage of transformer-based design techniques that enable CMOS oscillators and frequency dividers to achieve state-of-the-art performance. Design, optimization, and measured performance of oscillators and frequency dividers for different applications are discussed in detail, focusing on not only ultra-low supply voltage but also ultra-wide frequency tuning range and locking range. This book will be an invaluable reference for anyone working or interested in CMOS radio-frequency or mm-Wave integrated circuits and systems.

Static and Dynamic Performance Limitations for High Speed D/A Converters

Static and Dynamic Performance Limitations for High Speed D/A Converters PDF

Author: Anne van den Bosch

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 229

ISBN-13: 1475765797

DOWNLOAD EBOOK →

Static and Dynamic Performance Limitations for High Speed D/A Converters discusses the design and implementation of high speed current-steering CMOS digital-to-analog converters. Starting from the definition of the basic specifications for a D/A converter, the elements determining the static and dynamic performance are identified. Different guidelines based on scientific derivations are suggested to optimize this performance. Furthermore, a new closed formula has been derived to account for the influence of the transistor mismatch on the achievable resolution of the current-steering D/A converter. To allow a thorough understanding of the dynamic behavior, a new factor has been introduced. Moreover, the frequency dependency of the output impedance introduces harmonic distortion components which can limit the maximum attainable spurious free dynamic range. Finally, the last part of the book gives an overview on different existing transistor mismatch models and the link with the static performance of the D/A converter.

CMOS PLL Synthesizers: Analysis and Design

CMOS PLL Synthesizers: Analysis and Design PDF

Author: Keliu Shu

Publisher: Springer Science & Business Media

Published: 2006-01-20

Total Pages: 227

ISBN-13: 0387236694

DOWNLOAD EBOOK →

Thanks to the advance of semiconductor and communication technology, the wireless communication market has been booming in the last two decades. It evolved from simple pagers to emerging third-generation (3G) cellular phones. In the meanwhile, broadband communication market has also gained a rapid growth. As the market always demands hi- performance and low-cost products, circuit designers are seeking hi- integration communication devices in cheap CMOS technology. The phase-locked loop frequency synthesizer is a critical component in communication devices. It works as a local oscillator for frequency translation and channel selection in wireless transceivers and broadband cable tuners. It also plays an important role as the clock synthesizer for data converters in the analog-and-digital signal interface. This book covers the design and analysis of PLL synthesizers. It includes both fundamentals and a review of the state-of-the-art techniques. The transient analysis of the third-order charge-pump PLL reveals its locking behavior accurately. The behavioral-level simulation of PLL further clarifies its stability limit. Design examples are given to clearly illustrate the design procedure of PLL synthesizers. A complete derivation of reference spurs in the charge-pump PLL is also presented in this book. The in-depth investigation of the digital CA modulator for fractional-N synthesizers provides insightful design guidelines for this important block.

LNA-ESD Co-Design for Fully Integrated CMOS Wireless Receivers

LNA-ESD Co-Design for Fully Integrated CMOS Wireless Receivers PDF

Author: Paul Leroux

Publisher: Springer Science & Business Media

Published: 2006-03-30

Total Pages: 199

ISBN-13: 1402031912

DOWNLOAD EBOOK →

LNA-ESD Co-Design for Fully Integrated CMOS Wireless Receivers fits in the quest for complete CMOS integration of wireless receiver front-ends. With a combined discussion of both RF and ESD performance, it tackles one of the final obstacles on the road to CMOS integration. The book is conceived as a design guide for those actively involved in the design of CMOS wireless receivers. The book starts with a comprehensive introduction to the performance requirements of low-noise amplifiers in wireless receivers. Several popular topologies are explained and compared with respect to future technology and frequency scaling. The ESD requirements are introduced and related to the state-of-the-art protection devices and circuits. LNA-ESD Co-Design for Fully Integrated CMOS Wireless Receivers provides an extensive theoretical treatment of the performance of CMOS low-noise amplifiers in the presence of ESD-protection circuitry. The influence of the ESD-protection parasitics on noise figure, gain, linearity, and matching are investigated. Several RF-ESD co-design solutions are discussed allowing both high RF-performance and good ESD-immunity for frequencies up to and beyond 5 GHz. Special attention is also paid to the layout of both active and passive components. LNA-ESD Co-Design for Fully Integrated CMOS Wireless Receivers offers the reader intuitive insight in the LNA’s behavior, as well as the necessary mathematical background to optimize its performance. All material is experimentally verified with several CMOS implementations, among which a fully integrated GPS receiver front-end. The book is essential reading for RF design engineers and researchers in the field and is also suitable as a text book for an advanced course on the subject.

Systematic Design of Sigma-Delta Analog-to-Digital Converters

Systematic Design of Sigma-Delta Analog-to-Digital Converters PDF

Author: Ovidiu Bajdechi

Publisher: Springer Science & Business Media

Published: 2004-04-30

Total Pages: 216

ISBN-13: 9781402079450

DOWNLOAD EBOOK →

Systematic Design of Sigma-Delta Analog-to-Digital Converters describes the issues related to the sigma-delta analog-to-digital converters (ADCs) design in a systematic manner: from the top level of abstraction represented by the filters defining signal and noise transfer functions (STF, NTF), passing through the architecture level where topology-related performance is calculated and simulated, and finally down to parameters of circuit elements like resistors, capacitors, and amplifier transconductances used in individual integrators. The systematic approach allows the evaluation of different loop filters (order, aggressiveness, discrete-time or continuous-time implementation) with quantizers varying in resolution. Topologies explored range from simple single loops to multiple cascaded loops with complex structures including more feedbacks and feedforwards. For differential circuits, with switched-capacitor integrators for discrete-time (DT) loop filters and active-RC for continuous-time (CT) ones, the passive integrator components are calculated and the power consumption is estimated, based on top-level requirements like harmonic distortion and noise budget. This unified, systematic approach to choosing the best sigma-delta ADC implementation for a given design target yields an interesting solution for a high-resolution, broadband (DSL-like) ADC operated at low oversampling ratio, which is detailed down to transistor-level schematics. The target audience of Systematic Design of Sigma-Delta Analog-to-Digital Converters are engineers designing sigma-delta ADCs and/or switched-capacitor and continuous-time filters, both beginners and experienced. It is also intended for students/academics involved in sigma-delta and analog CAD research.

Systematic Modeling and Analysis of Telecom Frontends and their Building Blocks

Systematic Modeling and Analysis of Telecom Frontends and their Building Blocks PDF

Author: Piet Vanassche

Publisher: Springer Science & Business Media

Published: 2005-10-24

Total Pages: 243

ISBN-13: 1402031742

DOWNLOAD EBOOK →

To meet the demands of today's highly competitive market, analog electronics designers must develop their IC designs in a minimum of time. The difference between first- and second-time right seriously affects a company's share of the market. Analog designers are therefore in need for structured design methods together with the theory and tools to support them, especially when pushing the performance limits in high-performance designs. Systematic Modeling and Analysis of Telecom Frontends and Their Building Blocks aims to help designers in speeding up telecommunication frontend design by offering an in-depth understanding of the frontend's behavior together with methods and algorithms that support designers in bringing this understanding to practice. The book treats topics such as time-varying phase-locked loop stability, noise in mixing circuits, oscillator injection locking, oscillator phase noise behavior, harmonic oscillator dynamics and many more. In doing so, it always starts from a theoretical foundation that is both rigorous and general. Phase-locked loop and mixer analysis, for example, are grounded upon a general framework for time-varying small-signal analysis. Likewise, analysis of harmonic oscillator transient behavior and oscillator phase noise analysis are treated as particular applications of a general framework for oscillator perturbation analysis. In order to make the book as easy to read as possible, all theory is always accompanied by numerous examples and easy-to-catch intuitive explanations. As such, the book is suited for both computer-aided design engineers looking for general theories and methods, either as background material or for practical implementation in tools, as well as for practicing circuit designers looking for help and insight in dealing with a particular application or a particular high-performance design problem.