Design and Implementation of Voltage Source Converters in HVDC Systems

Design and Implementation of Voltage Source Converters in HVDC Systems PDF

Author: Nagwa F. Ibrahim

Publisher: Springer Nature

Published: 2020-09-12

Total Pages: 131

ISBN-13: 303051661X

DOWNLOAD EBOOK →

This book looks at the control of voltage source converter based high voltage direct current (VSC-HVDC). The objective is to understand the control structure of the VSC-HVDC system and establish the tuning criteria for the proportional-integral (PI) control of the converter controllers. Coverage includes modeling of the VSC-based HVDC transmission system using MATLAB and Simulink simulation package; implementation of control strategies for the VSC-based HVDC transmission system; and analysis of the developed system behavior under different conditions (normal and fault conditions). The book provides researchers, students, and engineers working in electrical power system transmission and power electronics and control in power transmission with a good understanding of the VSC-based HVDC transmission system concept and its behavior.

Design, Control, and Application of Modular Multilevel Converters for HVDC Transmission Systems

Design, Control, and Application of Modular Multilevel Converters for HVDC Transmission Systems PDF

Author: Kamran Sharifabadi

Publisher: John Wiley & Sons

Published: 2016-08-22

Total Pages: 416

ISBN-13: 1118851528

DOWNLOAD EBOOK →

Design, Control and Application of Modular Multilevel Converters for HVDC Transmission Systems is a comprehensive guide to semiconductor technologies applicable for MMC design, component sizing control, modulation, and application of the MMC technology for HVDC transmission. Separated into three distinct parts, the first offers an overview of MMC technology, including information on converter component sizing, Control and Communication, Protection and Fault Management, and Generic Modelling and Simulation. The second covers the applications of MMC in offshore WPP, including planning, technical and economic requirements and optimization options, fault management, dynamic and transient stability. Finally, the third chapter explores the applications of MMC in HVDC transmission and Multi Terminal configurations, including Supergrids. Key features: Unique coverage of the offshore application and optimization of MMC-HVDC schemes for the export of offshore wind energy to the mainland. Comprehensive explanation of MMC application in HVDC and MTDC transmission technology. Detailed description of MMC components, control and modulation, different modeling approaches, converter dynamics under steady-state and fault contingencies including application and housing of MMC in HVDC schemes for onshore and offshore. Analysis of DC fault detection and protection technologies, system studies required for the integration of HVDC terminals to offshore wind power plants, and commissioning procedures for onshore and offshore HVDC terminals. A set of self-explanatory simulation models for HVDC test cases is available to download from the companion website. This book provides essential reading for graduate students and researchers, as well as field engineers and professionals who require an in-depth understanding of MMC technology.

HVDC Transmission

HVDC Transmission PDF

Author: Chan-Ki Kim

Publisher: John Wiley & Sons

Published: 2009-07-23

Total Pages: 460

ISBN-13: 0470822961

DOWNLOAD EBOOK →

HVDC is a critical solution to several major problems encountered when trying to maintain systemic links and quality in large-scale renewable energy environments. HDVC can resolve a number of issues, including voltage stability of AC power networks, reducing fault current, and optimal management of electric power, ensuring the technology will play an increasingly important role in the electric power industry. To address the pressing need for an up-to-date and comprehensive treatment of the subject, Kim, Sood, Jang, Lim and Lee have collaborated to produce this key text and reference. Combining classroom-tested materials from North America and Asia, HVDC Transmission compactly summarizes the latest research results, and includes the insights of experts from power systems, power electronics, and simulation backgrounds. The authors walk readers through basic theory and practical applications, while also providing the broader historical context and future development of HVDC technology. Presents case studies covering basic and advanced HVDC deployments headed by world-renowned experts Demonstrates how to design, analyze and maintain HVDC systems in the field Provides updates on new HVDC technologies, such as active power filters, PWM, VSC, and 800 KV systems Rounds out readers' understanding with chapters dedicated to the key areas of simulation and main circuit design Introduces wind power system interconnection with HVDC Arms readers with an understanding of future HVDC trends Balancing theoretical instruction with practical application, HVDC Transmission delivers comprehensive working knowledge to power utility engineers, power transmission researchers, and advanced undergraduates and postgraduates in power engineering programs. The book is also a useful reference to for engineers and students focused on closely related areas such as renewable energy and power system planning.

Hvdc Transmission +1: Vsc Hvdc Based Mmc Topology In Power Systems

Hvdc Transmission +1: Vsc Hvdc Based Mmc Topology In Power Systems PDF

Author: Chan-ki Kim

Publisher: World Scientific

Published: 2021-04-09

Total Pages: 497

ISBN-13: 9811213593

DOWNLOAD EBOOK →

HVDC grids and super grids have sparked so much interest these days that researchers and engineers across the globe are talking about them, studying them, supporting them, or questioning them. This book provides valuable information for researchers, industry, and policy makers. It explains why HVDC is favorable over AC technologies for power transmission; what the key technologies and challenges are for developing an HVDC grid; how an HVDC grid will be designed and operated; and how future HVDC grids will evolve. The book also devotes significant attention to nontechnical aspects such as the influence of energy policy and regulatory frameworks.This book is a result of collaboration between industry and academia. It provides theoretical insights into the design and control of MMC technology and investigates practical aspects of the project planning, design, manufacture, implementation, and commissioning of MMC-HVDC and multi-terminal HVDC transmission technologies; filling the knowledge gap between the technology specialists and VSC-HVDC project developers and key personnel involved in those projects.

HVDC and FACTS Controllers

HVDC and FACTS Controllers PDF

Author: Vijay K. Sood

Publisher: Springer Science & Business Media

Published: 2006-04-18

Total Pages: 319

ISBN-13: 1402078919

DOWNLOAD EBOOK →

HVDC and FACTS Controllers: Applications of Static Converters in Power Systems focuses on the technical advances and developments that have taken place in the past ten years or so in the fields of High Voltage DC transmission and Flexible AC transmission systems. These advances (in HVDC transmission and FACTS) have added a new dimension to power transmission capabilities. The book covers a wide variety of topics, some of which are listed below: -Current Source and Voltage Source Converters, -Synchronization Techniques for Power Converters, -Capacitor Commutated Converters, -Active Filters, -Typical Disturbances on HVDC Systems, -Simulation Techniques, -Static Var Compensators based on Chain Link Converters, -Advanced Controllers, -Trends in Modern HVDC. In addition to EHV transmission, HVDC technology has impacted on a number of other areas as well. As an example, a chapter dealing with HVDC Light applications is included providing recent information on both on-shore and off-shore applications of wind farms.

VSC-FACTS-HVDC

VSC-FACTS-HVDC PDF

Author: Enrique Acha

Publisher: John Wiley & Sons

Published: 2019-08-05

Total Pages: 414

ISBN-13: 1119973988

DOWNLOAD EBOOK →

An authoritative reference on the new generation of VSC-FACTS and VSC-HVDC systems and their applicability within current and future power systems VSC-FACTS-HVDC and PMU: Analysis, Modelling and Simulation in Power Grids provides comprehensive coverage of VSC-FACTS and VSC-HVDC systems within the context of high-voltage Smart Grids modelling and simulation. Readers are presented with an examination of the advanced computer modelling of the VSC-FACTS and VSC-HVDC systems for steady-state, optimal solutions, state estimation and transient stability analyses, including numerous case studies for the reader to gain hands-on experience in the use of models and concepts. Key features: Wide-ranging treatment of the VSC achieved by assessing basic operating principles, topology structures, control algorithms and utility-level applications. Detailed advanced models of VSC-FACTS and VSC-HVDC equipment, suitable for a wide range of power network-wide studies, such as power flows, optimal power flows, state estimation and dynamic simulations. Contains numerous case studies and practical examples, including cases of multi-terminal VSC-HVDC systems. Includes a companion website featuring MATLAB software and Power System Computer Aided Design (PSCAD) scripts which are provided to enable the reader to gain hands-on experience. Detailed coverage of electromagnetic transient studies of VSC-FACTS and VSC-HVDC systems using the de-facto industry standard PSCAD/EMTDC simulation package. An essential guide for utility engineers, academics, and research students as well as industry managers, engineers in equipment design and manufacturing, and consultants.

Flexible Power Transmission

Flexible Power Transmission PDF

Author: Jos Arrillaga

Publisher: John Wiley & Sons

Published: 2007-09-27

Total Pages: 374

ISBN-13: 9780470511855

DOWNLOAD EBOOK →

The development of power semiconductors with greater ratings and improved characteristics has meant that the power industry has become more willing to develop new converter configurations. These new configurations take advantage of the higher controllability and switching frequencies of the new devices. The next few years will decide which of the proposed technologies will dominate future power transmission systems. Flexible Power Transmission is a comprehensive guide to the high voltage direct current (HVDC) options available, helping the reader to make informed decisions for designing future power transmission systems. The book includes: a full description of the principles and components in existing converter technology, as well as alternative proposals for self-commutating conversion; A review of the state of power semiconductors suited to HVDC transmission and present proposals for multi-level HVDC transmission. a detailed overview of the flexible HVDC methods for improving controllability and increasing power transfer capability in electrical power systems. up-to-date information on thyrisistor-based HVDC technology. coverage of new pulse width modulation (PWM) transmission technology and multi-level voltage source conversion (VSC) and current source conversion (CSC). An excellent reference for professional power engineers, Flexible Power Transmission is also a useful guide for power system researchers as well as lecturers and students in power systems and power electronics disciplines.

Multi-terminal High-voltage Converter

Multi-terminal High-voltage Converter PDF

Author: Bo Zhang

Publisher: John Wiley & Sons

Published: 2018-10-19

Total Pages: 224

ISBN-13: 1119188350

DOWNLOAD EBOOK →

An all-in-one guide to high-voltage, multi-terminal converters, this book brings together the state of the art and cutting-edge techniques in the various stages of designing and constructing a high-voltage converter. The book includes 9 chapters, and can be classified into three aspects. First, all existing high-voltage converters are introduced, including the conventional two-level converter, and the multi-level converters, such as the modular multi-level converter (MMC). Second, different kinds of multi-terminal high-voltage converters are presented in detail, including the topology, operation principle, control scheme and simulation verification. Third, some common issues of the proposed multi-terminal high-voltage converters are discussed, and different industrial applications of the proposed multi-terminal high-voltage converters are provided. Systematically proposes, for the first time, the design methodology for high-voltage converters in use of MTDC grids; also applicable to constructing novel power electronics converters, and driving the development of HVDC, which is one of the most important technology areas Presents the latest research on multi-terminal high-voltage converters and its application in MTDC transmission systems and other industrially important applications Offers an overview of existing technology and future trends of the high-voltage converter, with extensive discussion and analysis of different types of high-voltage converters and relevant control techniques (including DC-AC, AC-DC, DC-DC, and AC-AC converters) Provides readers with sufficient context to delve into the more specialized topics covered in the book Featuring a series of novel multi-terminal high-voltage converters proposed and patented by the authors, Multi-terminal High Voltage Converters is written for researchers, engineers, and advanced students specializing in power electronics, power system engineering and electrical engineering.

Design and Implementation of High-Efficiency DC-DC and Grid Connected Power Converters

Design and Implementation of High-Efficiency DC-DC and Grid Connected Power Converters PDF

Author: Seyedmohammad Mousavi

Publisher:

Published: 2020

Total Pages: 129

ISBN-13:

DOWNLOAD EBOOK →

Power Electronics converters used in different applications such as photovoltaic systems and electric vehicles require low size and high-efficiency converters with a step-down or step-up voltage ratio depends on their applications. Resonant switched-capacitor converters (R-SCC) are an alternative to inductor-based converters, known as buck or boost converters. These topologies reduce the size of the power converters, and their resonant operation reduces the switching losses of switching devices (higher efficiency) and mitigates the high spike-current over switching components during switching instants. In addition, DC sources are integrated into the power system through voltage-source converters (VSC). For this application, there is a need for a controller to regulate the output power and voltage of VSCs. This dissertation studies different operating modes of a multi-stage R-SCC for step-down and step-up voltage ratios. It also proposes a systematic method to calculate the output characteristics of the proposed resonant converters. In addition, a voltage controller is proposed to regulate the output voltage of the resonant converter while there is a variation in input voltage or load. It also evaluates the performance of a controller for a VSC in the VSCbased power system. All studies are verified by simulation and experimental results.

Design, Control, and Application of Modular Multilevel Converters for HVDC Transmission Systems

Design, Control, and Application of Modular Multilevel Converters for HVDC Transmission Systems PDF

Author: Kamran Sharifabadi

Publisher: John Wiley & Sons

Published: 2016-10-17

Total Pages: 414

ISBN-13: 1118851560

DOWNLOAD EBOOK →

Design, Control and Application of Modular Multilevel Converters for HVDC Transmission Systems is a comprehensive guide to semiconductor technologies applicable for MMC design, component sizing control, modulation, and application of the MMC technology for HVDC transmission. Separated into three distinct parts, the first offers an overview of MMC technology, including information on converter component sizing, Control and Communication, Protection and Fault Management, and Generic Modelling and Simulation. The second covers the applications of MMC in offshore WPP, including planning, technical and economic requirements and optimization options, fault management, dynamic and transient stability. Finally, the third chapter explores the applications of MMC in HVDC transmission and Multi Terminal configurations, including Supergrids. Key features: Unique coverage of the offshore application and optimization of MMC-HVDC schemes for the export of offshore wind energy to the mainland. Comprehensive explanation of MMC application in HVDC and MTDC transmission technology. Detailed description of MMC components, control and modulation, different modeling approaches, converter dynamics under steady-state and fault contingencies including application and housing of MMC in HVDC schemes for onshore and offshore. Analysis of DC fault detection and protection technologies, system studies required for the integration of HVDC terminals to offshore wind power plants, and commissioning procedures for onshore and offshore HVDC terminals. A set of self-explanatory simulation models for HVDC test cases is available to download from the companion website. This book provides essential reading for graduate students and researchers, as well as field engineers and professionals who require an in-depth understanding of MMC technology.