Deconvolution and Inverse Theory

Deconvolution and Inverse Theory PDF

Author: V. Dimri

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 249

ISBN-13: 1483291375

DOWNLOAD EBOOK →

This is the first study to present simultaneously both deconvolution and inversion, two powerful tools of data analysis. Featured within this volume are various geophysical convolution models and a treatment of deconvolution for a time-varying signal. The single channel time-varying deconvolution is shown equivalent to the multichannel time-invariant deconvolution, thus a formalism and associated algorithms can handle both. Inverse theory as well as various inversion schemes are presented on the basis of a relationship between a small perturbation to the model and its effects on the observation. The information theory inversion scheme is discussed, and several types of norm of minimization presented. Additionally, concepts and results of inverse theory are applied to design a new deconvolution operator for estimating magnetization and density distribution, and the constraint of the Backus-Gilbert formalism of inverse theory is used to design a new prediction error filter for maximum entropy spectral estimates. Maximum likelihood, another high resolution method is also presented. This volume can be utilised as a graduate-level text for courses in Geophysics. Some chapters will be of use for graduate courses in Applied Mathematics, Applied Statistics, and Oceanography.

Spectral Analysis and Filter Theory in Applied Geophysics

Spectral Analysis and Filter Theory in Applied Geophysics PDF

Author: Burkhard Buttkus

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 665

ISBN-13: 364257016X

DOWNLOAD EBOOK →

This state-of-the-art survey serves as a complete overview of the subject. Besides the principles and theoretical foundations, emphasis is laid on practical applicability -- describing not only classical methods, but also modern developments and their applications. Students, researchers and practitioners, especially in the fields of data registration, treatment and evaluation, will find this a wealth of information.

Parameter Estimation and Inverse Problems

Parameter Estimation and Inverse Problems PDF

Author: Richard C. Aster

Publisher: Elsevier

Published: 2018-10-16

Total Pages: 404

ISBN-13: 0128134232

DOWNLOAD EBOOK →

Parameter Estimation and Inverse Problems, Third Edition, is structured around a course at New Mexico Tech and is designed to be accessible to typical graduate students in the physical sciences who do not have an extensive mathematical background. The book is complemented by a companion website that includes MATLAB codes that correspond to examples that are illustrated with simple, easy to follow problems that illuminate the details of particular numerical methods. Updates to the new edition include more discussions of Laplacian smoothing, an expansion of basis function exercises, the addition of stochastic descent, an improved presentation of Fourier methods and exercises, and more. Features examples that are illustrated with simple, easy to follow problems that illuminate the details of a particular numerical method Includes an online instructor’s guide that helps professors teach and customize exercises and select homework problems Covers updated information on adjoint methods that are presented in an accessible manner

Discrete Inverse Problems

Discrete Inverse Problems PDF

Author: Per Christian Hansen

Publisher: SIAM

Published: 2010-01-01

Total Pages: 220

ISBN-13: 089871883X

DOWNLOAD EBOOK →

This book gives an introduction to the practical treatment of inverse problems by means of numerical methods, with a focus on basic mathematical and computational aspects. To solve inverse problems, we demonstrate that insight about them goes hand in hand with algorithms.

Geophysical Data Analysis: Understanding Inverse Problem Theory and Practice

Geophysical Data Analysis: Understanding Inverse Problem Theory and Practice PDF

Author: Max A. Meju

Publisher: SEG Books

Published: 1994

Total Pages: 305

ISBN-13: 156080257X

DOWNLOAD EBOOK →

This publication is designed to provide a practical understanding of methods of parameter estimation and uncertainty analysis. The practical problems covered range from simple processing of time- and space-series data to inversion of potential field, seismic, electrical, and electromagnetic data. The various formulations are reconciled with field data in the numerous examples provided in the book; well-documented computer programmes are also given to show how easy it is to implement inversion algorithms.

A Taste of Inverse Problems

A Taste of Inverse Problems PDF

Author: Martin Hanke

Publisher: SIAM

Published: 2017-01-01

Total Pages: 171

ISBN-13: 1611974933

DOWNLOAD EBOOK →

Inverse problems need to be solved in order to properly interpret indirect measurements. Often, inverse problems are ill-posed and sensitive to data errors. Therefore one has to incorporate some sort of regularization to reconstruct significant information from the given data. A Taste of Inverse Problems: Basic Theory and Examples?presents the main achievements that have emerged in regularization theory over the past 50 years, focusing on linear ill-posed problems and the development of methods that can be applied to them. Some of this material has previously appeared only in journal articles. This book rigorously discusses state-of-the-art inverse problems theory, focusing on numerically relevant aspects and omitting subordinate generalizations; presents diverse real-world applications, important test cases, and possible pitfalls; and treats these applications with the same rigor and depth as the theory.

Approximate Deconvolution Models of Turbulence

Approximate Deconvolution Models of Turbulence PDF

Author: William J. Layton

Publisher: Springer Science & Business Media

Published: 2012-01-07

Total Pages: 190

ISBN-13: 3642244084

DOWNLOAD EBOOK →

This volume presents a mathematical development of a recent approach to the modeling and simulation of turbulent flows based on methods for the approximate solution of inverse problems. The resulting Approximate Deconvolution Models or ADMs have some advantages over more commonly used turbulence models – as well as some disadvantages. Our goal in this book is to provide a clear and complete mathematical development of ADMs, while pointing out the difficulties that remain. In order to do so, we present the analytical theory of ADMs, along with its connections, motivations and complements in the phenomenology of and algorithms for ADMs.

Linear and Nonlinear Inverse Problems with Practical Applications

Linear and Nonlinear Inverse Problems with Practical Applications PDF

Author: Jennifer L. Mueller

Publisher: SIAM

Published: 2012-11-30

Total Pages: 351

ISBN-13: 9781611972344

DOWNLOAD EBOOK →

Inverse problems arise in practical applications whenever there is a need to interpret indirect measurements. This book explains how to identify ill-posed inverse problems arising in practice and gives a hands-on guide to designing computational solution methods for them, with related codes on an accompanying website. The guiding linear inversion examples are the problem of image deblurring, x-ray tomography, and backward parabolic problems, including heat transfer. A thorough treatment of electrical impedance tomography is used as the guiding nonlinear inversion example which combines the analytic-geometric research tradition and the regularization-based school of thought in a fruitful manner. This book is complete with exercises and project topics, making it ideal as a classroom textbook or self-study guide for graduate and advanced undergraduate students in mathematics, engineering or physics who wish to learn about computational inversion. It also acts as a useful guide for researchers who develop inversion techniques in high-tech industry.

Maximum-Likelihood Deconvolution

Maximum-Likelihood Deconvolution PDF

Author: Jerry M. Mendel

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 233

ISBN-13: 1461233704

DOWNLOAD EBOOK →

Convolution is the most important operation that describes the behavior of a linear time-invariant dynamical system. Deconvolution is the unraveling of convolution. It is the inverse problem of generating the system's input from knowledge about the system's output and dynamics. Deconvolution requires a careful balancing of bandwidth and signal-to-noise ratio effects. Maximum-likelihood deconvolution (MLD) is a design procedure that handles both effects. It draws upon ideas from Maximum Likelihood, when unknown parameters are random. It leads to linear and nonlinear signal processors that provide high-resolution estimates of a system's input. All aspects of MLD are described, from first principles in this book. The purpose of this volume is to explain MLD as simply as possible. To do this, the entire theory of MLD is presented in terms of a convolutional signal generating model and some relatively simple ideas from optimization theory. Earlier approaches to MLD, which are couched in the language of state-variable models and estimation theory, are unnecessary to understand the essence of MLD. MLD is a model-based signal processing procedure, because it is based on a signal model, namely the convolutional model. The book focuses on three aspects of MLD: (1) specification of a probability model for the system's measured output; (2) determination of an appropriate likelihood function; and (3) maximization of that likelihood function. Many practical algorithms are obtained. Computational aspects of MLD are described in great detail. Extensive simulations are provided, including real data applications.