CVD Polymers

CVD Polymers PDF

Author: Karen K. Gleason

Publisher: John Wiley & Sons

Published: 2015-03-05

Total Pages: 488

ISBN-13: 3527690263

DOWNLOAD EBOOK →

The method of CVD (chemical vapor deposition) is a versatile technique to fabricate high-quality thin films and structured surfaces in the nanometer regime from the vapor phase. Already widely used for the deposition of inorganic materials in the semiconductor industry, CVD has become the method of choice in many applications to process polymers as well. This highly scalable technique allows for synthesizing high-purity, defect-free films and for systematically tuning their chemical, mechanical and physical properties. In addition, vapor phase processing is critical for the deposition of insoluble materials including fluoropolymers, electrically conductive polymers, and highly crosslinked organic networks. Furthermore, CVD enables the coating of substrates which would otherwise dissolve or swell upon exposure to solvents. The scope of the book encompasses CVD polymerization processes which directly translate the chemical mechanisms of traditional polymer synthesis and organic synthesis in homogeneous liquids into heterogeneous processes for the modification of solid surfaces. The book is structured into four parts, complemented by an introductory overview of the diverse process strategies for CVD of polymeric materials. The first part on the fundamentals of CVD polymers is followed by a detailed coverage of the materials chemistry of CVD polymers, including the main synthesis mechanisms and the resultant classes of materials. The third part focuses on the applications of these materials such as membrane modification and device fabrication. The final part discusses the potential for scale-up and commercialization of CVD polymers.

CVD Polymers

CVD Polymers PDF

Author: Karen K. Gleason

Publisher: John Wiley & Sons

Published: 2015-04-01

Total Pages: 484

ISBN-13: 352769028X

DOWNLOAD EBOOK →

The method of CVD (chemical vapor deposition) is a versatile technique to fabricate high-quality thin films and structured surfaces in the nanometer regime from the vapor phase. Already widely used for the deposition of inorganic materials in the semiconductor industry, CVD has become the method of choice in many applications to process polymers as well. This highly scalable technique allows for synthesizing high-purity, defect-free films and for systematically tuning their chemical, mechanical and physical properties. In addition, vapor phase processing is critical for the deposition of insoluble materials including fluoropolymers, electrically conductive polymers, and highly crosslinked organic networks. Furthermore, CVD enables the coating of substrates which would otherwise dissolve or swell upon exposure to solvents. The scope of the book encompasses CVD polymerization processes which directly translate the chemical mechanisms of traditional polymer synthesis and organic synthesis in homogeneous liquids into heterogeneous processes for the modification of solid surfaces. The book is structured into four parts, complemented by an introductory overview of the diverse process strategies for CVD of polymeric materials. The first part on the fundamentals of CVD polymers is followed by a detailed coverage of the materials chemistry of CVD polymers, including the main synthesis mechanisms and the resultant classes of materials. The third part focuses on the applications of these materials such as membrane modification and device fabrication. The final part discusses the potential for scale-up and commercialization of CVD polymers.

Chemical Vapor Deposition Polymerization

Chemical Vapor Deposition Polymerization PDF

Author: Jeffrey B. Fortin

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 112

ISBN-13: 147573901X

DOWNLOAD EBOOK →

Chemical Vapor Deposition Polymerization - The Growth and Properties of Parylene Thin Films is intended to be valuable to both users and researchers of parylene thin films. It should be particularly useful for those setting up and characterizing their first research deposition system. It provides a good picture of the deposition process and equipment, as well as information on system-to-system variations that is important to consider when designing a deposition system or making modifications to an existing one. Also included are methods to characterizae a deposition system's pumping properties as well as monitor the deposition process via mass spectrometry. There are many references that will lead the reader to further information on the topic being discussed. This text should serve as a useful reference source and handbook for scientists and engineers interested in depositing high quality parylene thin films.

High Performance Polymers

High Performance Polymers PDF

Author: Johannes Karl Fink

Publisher: William Andrew

Published: 2014-07-04

Total Pages: 442

ISBN-13: 0323311431

DOWNLOAD EBOOK →

Approaching the material from a chemistry and engineering perspective, High Performance Polymers presents the most reliable and current data available about state-of-the-art polymerization, fabrication, and application methods of high performance industrial polymers. Chapters are arranged according to the chemical constitution of the individual classes, beginning with main chain carbon-carbon polymers and leading to ether-containing, sulfur-containing, and so on. Each chapter follows an easily readable template, provides a brief overview and history of the polymer, and continues on to such sub-topics as monomers; polymerization and fabrication; properties; fabrication methods; special additives; applications; suppliers and commercial grades; safety; and environmental impact and recycling. High Performance Polymers brings a wealth of up-to-date, high performance polymer data to you library, in a format that allows for either a fast fact-check or more detailed study. In this new edition the data has been fully updated to reflect all developments since 2008, particularly in the topics of monomers, synthesis of polymers, special polymer types, and fields of application. Presents the state-of-the-art polymerization, fabrication and application methods of high performance industrial polymers Provides fundamental information for practicing engineers working in industries that develop advanced applications (including electronics, automotive and medical) Discusses environmental impact and recycling of polymers

Surface Modification of Polymers

Surface Modification of Polymers PDF

Author: Jean Pinson

Publisher: John Wiley & Sons

Published: 2020-02-18

Total Pages: 458

ISBN-13: 3527345418

DOWNLOAD EBOOK →

A guide to modifying and functionalizing the surfaces of polymers Surface Modification of Polymers is an essential guide to the myriad methods that can be employed to modify and functionalize the surfaces of polymers. The functionalization of polymer surfaces is often required for applications in sensors, membranes, medicinal devices, and others. The contributors?noted experts on the topic?describe the polymer surface in detail and discuss the internal and external factors that influence surface properties. This comprehensive guide to the most important methods for the introduction of new functionalities is an authoritative resource for everyone working in the field. This book explores many applications, including the plasma polymerization technique, organic surface functionalization by initiated chemical vapor deposition, photoinduced functionalization on polymer surfaces, functionalization of polymers by hydrolysis, aminolysis, reduction, oxidation, surface modification of nanoparticles, and many more. Inside, readers will find information on various applications in the biomedical field, food science, and membrane science. This important book: -Offers a range of polymer functionalization methods for biomedical applications, water filtration membranes, and food science -Contains discussions of the key surface modification methods, including plasma and chemical techniques, as well as applications for nanotechnology, environmental filtration, food science, and biomedicine -Includes contributions from a team of international renowned experts Written for polymer chemists, materials scientists, plasma physicists, analytical chemists, surface physicists, and surface chemists, Surface Modification of Polymers offers a comprehensive and application-oriented review of the important functionalization methods with a special focus on biomedical applications, membrane science, and food science.

Environmentally Focused Patterning and Processing of Polymer Thin Films by Initiated Chemical Vapor Deposition (iCVD) and Oxidative Chemical Vapor Deposition (oCVD)

Environmentally Focused Patterning and Processing of Polymer Thin Films by Initiated Chemical Vapor Deposition (iCVD) and Oxidative Chemical Vapor Deposition (oCVD) PDF

Author: Nathan Jeffrey Trujillo

Publisher:

Published: 2010

Total Pages: 216

ISBN-13:

DOWNLOAD EBOOK →

The new millennium has brought fourth many technological innovations made possible by the advancement of high speed integrated circuits. The materials and energy requirements for a microchip is orders of magnitude higher than that of "traditional" goods, and current materials management requirements for EHS friendly low-k processing require a 10% annual increase in raw materials utilization. Initiated Chemical Vapor Deposition (iCVD) is a low-energy, one step, solvent-free process for producing polymeric thin films This thesis describes the deposition of a novel low-k iCVD precursor, 1,3,5,7-tetravinyltetramethylcylcotetrasiloxane (V4D4). The high degree of organic content in the as-deposited film affords the ability to tune the film's properties by annealing. The incorporation of atmospheric oxygen at high temperatures enhances the mechanical and electrical properties of the films. Films annealed at 410'C have a dielectric constant of 2.15, hardness and modulus of 0.78 GPa and 5.4 GPa, respectively. These values are comparatively better than previously reported results for CVD low-k films. Environmentally friendly low-k processing encompasses materials and energy management in the entire integration process, including lithography. Colloidal lithography was combined with iCVD and capillary force lithography to create spatially addressable grafted polymer pattern nanostructures, without the need for expensive lithography tools. Using this method, we pattern our novel low dielectric constant polymer down to 25 nm without the need for environmentally harmful solvents. Furthermore, these grafted patterns were produced for a broad material set of functional organic, fluorinated, and silicon containing polymers. A variation of this process created amine functionalized biocompatible conducting polymer nanostructure patterns for biosensor applications. These were fabricated using grafting reactions between oxidative chemical vapor deposition (oCVD) PEDOT conducting polymers and amine functionalized polystyrene (PS) colloidal templates. Carboxylate containing oCVD copolymer patterns were used to immobilized fluorescent dyes. Fluorescent colloidal particles were assembled within dyed PEDOT-co-TAA copolymer nanobowl templates to create bifunctional patterns for optical data storage applications. Finally, UV and e-beam lithography were used to pattern covalently tethered vinyl monolayers for resist-free patterning of iCVD and oCVD polymers, using environmentally innocuous solvents.

Conformal Polymer Thin Films on Structurally Complex Surfaces by Initiated Chemical Vapor Deposition

Conformal Polymer Thin Films on Structurally Complex Surfaces by Initiated Chemical Vapor Deposition PDF

Author: Chia-Yun (Sharon) Hsieh

Publisher:

Published: 2016

Total Pages: 276

ISBN-13:

DOWNLOAD EBOOK →

Initiated chemical vapor deposition (iCVD) is a novel CVD technique for forming polymer thin films. Compared to traditional thermal and plasma CVD methods, iCVD operates at low substrate temperature and low power conditions. This has the benefit of enabling well-defined reaction pathways for polymerization that lead to stoichiometric polymers. The iCVD approach has been investigated for many polymer chemistries and the resulting iCVD polymers have been shown to possess analogous structures and properties as bulk polymers from liquid phase synthesis. Among iCVD reactions, free radical polymerization is the most common, where vinyl monomers can be polymerized with peroxide free radical initiators. Recently, cationic ring opening polymerization via iCVD was demonstrated by applying boron trifluoride diethyl etherate as a cationic initiator for the polymerization of ethylene oxide. This work will demonstrate for the first time the iCVD synthesis of polyglycidol (PGL) via cationic ring opening polymerization of glycidol. iCVD PGL shows similar structure and properties as liquid-synthesized PGL reported in literature based on spectroscopic analysis. Furthermore, the iCVD deposition behavior under different modes of iCVD polymerization environment - surface-driven, gas-driven, and supersaturation - will be discussed for forming polyglycidol (PGL), poly(2-hydroxyethyl methacrylate) (PHEMA), poly(tetrafluoroethylene) (PTFE) and polyvinylpyrrolidone (PVP) coatings on structurally complex substrates, including nanopores, nanorods, and microstructures. Two major parameters Pm/Psat that represents the ratio of the partial pressure of the monomer to its saturation pressure, and Knudsen number (Kn) will be evaluated and related with the observed deposition behavior. Surface-driven iCVD of PGL and PHEMA have been found to conformally deposit in nanoporous TiO2 and microcatheters by carefully controlling Pm/Psat over a wide range of Kn. However, with gas-driven iCVD of PTFE, although conformal coatings have been achieved on micropillars and nanorods, coating within nanoporous networks at very large Kn was difficult even with careful control of Pm/Psat. It is believed that the PTFE polymerization is significantly driven by gas phase reactions that are not well controlled with a surface Pm/Psat parameter and, by moving to smaller and more confined features, the gas phase chemistries dominate and interfere with surface polymerization. By controlling Pm/Psat > 1, i.e. in a supersaturated monomer state, a recent iCVD processing discovery was made. Under supersaturation conditions, PVP was found to selectively grow on certain material surfaces and not others. This is believed to be due to differences in wettability of the monomer that dictates where the polymer grows, and enables directed patterning through iCVD. With the ability to deposit polymer coatings on different substrates, this work will illustrate a number of applications that highlight iCVD as an enabling technology. iCVD of PHEMA on ventricular catheters is found to be an effective coating for reducing undesired cell attachment in vitro by 77% after 17 days in cultured media compared to bare catheters, and so has the potential for improving catheter viability and reliability. iCVD of PTFE on silicon micropillars and nickel nanorod arrays is able to produce effective non-wetting (superhydrophobic) surface structures for enhancing latent heat transfer. iCVD of PGL in mesoporous TiO2 nanoparticle networks produces polymer nanocomposites with ultrahigh nanofiller loading (>80 wt%), offering a valuable platform for studying polymer nanocomposites with uniform and ultrahigh loading that exceed conventional processing limits (10-15 wt%) due to filler particle aggregation. As a result, the PGL glass transition temperature is found to increase significantly by 50-60 ℗ʻC compared to bulk PGL films without TiO2 nanofiller. The enhanced glass transition is attributed to appreciable hydrogen bonding interactions between PGL and TiO2.

Plastics in Medical Devices for Cardiovascular Applications

Plastics in Medical Devices for Cardiovascular Applications PDF

Author: Ajay Padsalgikar

Publisher: William Andrew

Published: 2017-02-01

Total Pages: 198

ISBN-13: 0323371221

DOWNLOAD EBOOK →

Plastics in Medical Devices for Cardiovascular Applications enables designers of new cardiovascular medical devices to make decisions about the kind of plastics that can go into the manufacture of their device by explaining the property requirements of various applications in this area, including artificial valves, lead insulation, balloons, vascular grafts, and more. Enables designers to improve device performance and remain compliant with regulations by selecting the best material for each application Presents a range of applications, including artificial valves, stents, and vascular grafts Explains which materials can be used for each application, and why each is appropriate, thus assisting in the design of better tools and processes