Genome Editing

Genome Editing PDF

Author: Shabir Hussain Wani

Publisher: Springer Nature

Published: 2022-11-08

Total Pages: 338

ISBN-13: 3031080726

DOWNLOAD EBOOK →

Over the last few decades, various techniques have been developed to alter the properties of plants and animals. While the targeted transfer of recombinant DNA into crop plants remains a valuable tool to achieve a desirable breeding outcome, integration of transgenes into the host genome has been random, which in part, leads to reduced acceptance of GMOs by the general population in some parts of the world. Likewise, methods of induced mutagenesis, such as TILLING, have the disadvantage that many mutations are induced per plant, which has to be removed again by expensive backcrossing. Advances in genome sequencing have provided more and more information on differences between susceptible and resistant varieties, which can now be directly targeted and modified using CRISPR/Cas9 technology. By selecting specific gRNAs occurrence of off-target modifications are comparatively low. ZFNs and TALENs- based approaches required re-engineering a new set of assembled polypeptides for every new target site for each experiment. The difficulty in cloning and protein engineering prevented these tools from being broadly adopted by the scientific community. Compared to these technologies, designing the CRISPR toolbox is much simpler and more flexible. CRISPR/Cas9 is versatile, less expensive and highly efficient. It has become the most widely used technology for genome editing in many organisms. Since its inception as a powerful genome-editing tool in late 2012, this breakthrough technology has completely changed how science is performed. The first few chapters in this book introduce the basic concept, design and implementation of CRISPR/Cas9 for different plant systems. They are followed by in-depth discussions on the legal and bio-safety issues accompanying commercialization and patenting of this emerging technology. Lastly, this book covers emerging areas of new tools and potential applications. We believe readers, novice and expert alike, will benefit from this all-in-one resource on genome editing for crop improvement. Chapter 17 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.

Genetically Engineered Crops

Genetically Engineered Crops PDF

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2017-01-28

Total Pages: 607

ISBN-13: 0309437385

DOWNLOAD EBOOK →

Genetically engineered (GE) crops were first introduced commercially in the 1990s. After two decades of production, some groups and individuals remain critical of the technology based on their concerns about possible adverse effects on human health, the environment, and ethical considerations. At the same time, others are concerned that the technology is not reaching its potential to improve human health and the environment because of stringent regulations and reduced public funding to develop products offering more benefits to society. While the debate about these and other questions related to the genetic engineering techniques of the first 20 years goes on, emerging genetic-engineering technologies are adding new complexities to the conversation. Genetically Engineered Crops builds on previous related Academies reports published between 1987 and 2010 by undertaking a retrospective examination of the purported positive and adverse effects of GE crops and to anticipate what emerging genetic-engineering technologies hold for the future. This report indicates where there are uncertainties about the economic, agronomic, health, safety, or other impacts of GE crops and food, and makes recommendations to fill gaps in safety assessments, increase regulatory clarity, and improve innovations in and access to GE technology.

Molecular Plant Breeding and Genome Editing Tools for Crop Improvement

Molecular Plant Breeding and Genome Editing Tools for Crop Improvement PDF

Author: Deka, Pradip Chandra

Publisher: IGI Global

Published: 2020-08-07

Total Pages: 489

ISBN-13: 1799843130

DOWNLOAD EBOOK →

Plant breeders have used mutagenic agents to create variability for their use in crop improvement. However, application of mutagenic agents has its own drawbacks, such as non-specificity and random nature, simultaneous effect on large numbers of genes, and induction of chromosomal aberrations. To overcome these limitations, several genome editing systems have been developed with the aid of cutting-edge technology rooted in the expertise of several research fields. Molecular Plant Breeding and Genome Editing Tools for Crop Improvement is a pivotal reference source that provides an interdisciplinary approach to crop breeding through genetics. Featuring coverage of a broad range of topics including software, molecular markers, and plant variety identification, this book is ideally designed for agriculturalists, biologists, engineers, advocates, policymakers, researchers, academicians, and students.

Principles and Practices of OMICS and Genome Editing for Crop Improvement

Principles and Practices of OMICS and Genome Editing for Crop Improvement PDF

Author: Channa S. Prakash

Publisher: Springer Nature

Published: 2022-07-18

Total Pages: 422

ISBN-13: 3030969258

DOWNLOAD EBOOK →

Global food security is increasingly challenging in light of population increase, the impact of climate change on crop production, and limited land available for agricultural expansion. Plant breeding and other agricultural technologies have contributed considerably for food and nutritional security over the last few decades. Genetic engineering approaches are powerful tools that we have at our disposal to overcome substantial obstacles in the way of efficiency and productivity of current agricultural practices. Genome engineering via CRISPR/Cas9, Cpf1, base editing and prime editing, and OMICs through genomics, transcriptomics, proteomics, phenomics, an metabolomics have helped to discover underlying mechanisms controlling traits of economic importance. Principle and Practices of OMICs and Genome Editing for Crop Improvement provides recent research from eminent scholars from around the world, from various geographical regions, with established expertise on genome editing and OMICs technologies. This book offers a wide range of information on OMICs techniques and their applications to develop biotic, abiotic and climate resilient crops, metabolomics and next generation sequencing for sustainable crop production, integration bioinformatics, and multi-omics for precision plant breeding. Other topics include application of genome editing technologies for food and nutritional security, speed breeding, hybrid seed production, resource use efficiency, epigenetic modifications, transgene free breeding, database and bioinformatics for genome editing, and regulations adopted by various countries around globe for genome edited crops. Both OMICs and genome editing are vigorously utilized by researchers for crop improvement programs; however, there is limited literature available in a single source. This book provides a valuable resource not only for students at undergraduate and postgraduate level but also for researchers, stakeholders, policy makers, and practitioners interested in the potential of genome editing and OMICs for crop improvement programs.

Crop Improvement

Crop Improvement PDF

Author: Siti Nor Akmar Abdullah

Publisher: Springer

Published: 2017-10-17

Total Pages: 388

ISBN-13: 3319650793

DOWNLOAD EBOOK →

The book covers the latest development in the biosciences field covering key topics in crop improvement including ‘omic approaches to improving sustainable crop production, advancement in marker technology, strategies in genetic manipulation, crop quality and sustainability and plant microbe interaction detailing on proven technologies to address critical issue for agricultural sustainability which are beneficial for researchers and students. The book also includes aspects of preserving crops after harvest as this is a key factor in promoting sustainable crop quality in terms of addressing waste, choosing the appropriate packaging and moving crops through the food and industrial supply chain. An important strategy to overcome the challenges in providing food for the world population in a sustainable manner is through concerted efforts by crop scientists to embrace new technologies in increasing yield, quality and improving food safety while minimizing adverse environmental impact of the agricultural activities. Most of the proven molecular and genetic technologies in crop science have been tested and verified in model plants such as Arabidopsis and tomato. The technologies, when deployed on various plant species of importance for human nutrition and industrial applications, including cereals, vegetables, fruits, herbs, fibre and oil crops, face many challenges, not only due to their longer life cycle but many other physiological and environmental factors affecting yield and quality of plant products. Furthermore, major impacts on crop production due to catastrophic diseases and global climate change needs urgent and innovative solutions. Therefore a systematic approach, employing various leading-edge technologies that enable the functional elucidation of key pathway genes via ‘omics tools, genome wide association with desired phenotypes and development of cost effective and practicable molecular tools for selection, is vital. The International Conference on Crop Improvement was held to address these and other pressing issues. This volume summarizes the keynote presentations from the meeting and highlights addition discussions that are critical to crop improvement in a challenging time.

Advanced Crop Improvement, Volume 1

Advanced Crop Improvement, Volume 1 PDF

Author: Aamir Raina

Publisher: Springer

Published: 2023-09-11

Total Pages: 0

ISBN-13: 9783031281457

DOWNLOAD EBOOK →

As per the reports of FAO, the human population will rise to 9 billion by the end of 2050 and 70% of more food must be produced over the next three decades to feed the additional population. The breeding approaches for crop improvement programs are dependent on the availability and accessibility of genetic variation, either spontaneous or induced by the mutagens. Plant breeders, agronomists, and geneticists are under constant pressure to expand food production by employing innovative breeding strategies to enhance yield, adaptability, nutrition, resistance to biotic and abiotic stresses. In conventional breeding approaches, introgression of genes in crop varieties is laborious and time-consuming. Nowadays, new innovative plant breeding techniques such as molecular breeding and plant biotechnology, supplement the traditional breeding approaches to achieve the desired goals of enhanced food production. With the advent of recent molecular tools like genomics, transgenics, molecular marker-assisted back-crossing, TILLING, Eco-TILLING, gene editing, CRISPR CAS, non-targeted protein abundant comparative proteomics, genome wide association studies have made possible mapping of important QTLs, insertion of transgenes, reduction of linkage drags, and manipulation of genome. In general, conventional and modern plant breeding approaches would be strategically ideal for developing new elite crop varieties to meet the feeding requirement of the increasing world population. This book highlights the latest progress in the field of plant breeding, and their applicability in crop improvement. The basic concept of this 2-volume work is to assess the use of modern breeding strategies in supplementing conventional breeding toward the development of elite crop varieties, for obtaining desired goals of food production.

Mutation Breeding for Sustainable Food Production and Climate Resilience

Mutation Breeding for Sustainable Food Production and Climate Resilience PDF

Author: Suprasanna Penna

Publisher: Springer Nature

Published: 2023-04-04

Total Pages: 815

ISBN-13: 9811697205

DOWNLOAD EBOOK →

This book highlights the recent progress on the applications of mutation breeding technology in crop plants. Plant breeders and agriculturists are faced with the new challenges of climate change, human population growth, and dwindling arable land and water resources which threaten to sustain food production worldwide. Genetic variation is the basis which plant breeders require to produce new and improved cultivars. The understanding of mutation induction and exploring its applications has paved the way for enhancing genetic variability for various plant and agronomic characters, and led to advances in gene discovery for various traits. Induced mutagenesis has played a significant role in crop improvement and currently, the technology has resulted in the development and release of more than 3600 mutant varieties in most of the crop plants with great economic impact. The field of ‘mutation breeding’ has come long way to become an important approach for crop improvement. This book covers various methodologies of mutation induction, screening of mutants, genome editing and genomics advances and mutant gene discovery. The book further discusses success stories in different countries and applications of mutation breeding in food crops, horticultural plants and plantation crops. This informative book is very useful to plant breeders, students and researchers in the field of agriculture, plant sciences, food science and genetics.

OMICs-based Techniques for Global Food Security

OMICs-based Techniques for Global Food Security PDF

Author: Sajid Fiaz

Publisher: John Wiley & Sons

Published: 2024-06-04

Total Pages: 324

ISBN-13: 1394209126

DOWNLOAD EBOOK →

Forward-thinking resource discussing how to integrate OMICs and novel genome editing technologies for sustainable crop production OMICS-based Techniques for Global Food Security provides an in-depth understanding of the mechanisms of OMICs techniques for crop improvement, details how OMICs techniques can contribute to identifying genes and traits with economic benefits, and explains how to develop crop plants with improved yield, quality, and resistance to stresses through genome editing technologies, providing evidence on the developments of climate resilient crops via applications of genome editing techniques throughout. The text covers the application of OMICs in crop plants, the integration of bioinformatics and multi-OMICs for precision breeding, de-novo domestication, CRISPR/Cas system for crop improvement, hybrid seed production, transgene free breeding, regulation for genome edit crops, bioinformatics and genome editing, and other topics related OMICs and genome editing. The text also includes a chapter on the global regulations for genome edited crops, and explains how these regulations influence novel plant breeding techniques in their adopted countries. Written by two highly qualified academics, OMICs-based Techniques for Global Food Security covers sample topics such as: Crops genome sequencing and their application for crop improvement, and functional characterization of cereals genome The role of OMICs based technologies in plant sciences and utilization of different multi-OMICs approaches for crop improvement Genomic database and genetic resource of cereals, speed breeding for rapid crop improvement, and evolution of genome editing technologies CRISPR system discovery, history, and future perspective, and CRISPR/Cas system for biotic and abiotic stress resistance in cereals Providing a collection of recent literature focusing on developments and applications of OMICs based technologies for crop improvement, OMICs-based Techniques for Global Food Security is an important read for plant breeders, molecular biologists, researchers, postdoctoral fellows, and students in disciplines for developing crops with high yield and nutritional potential.

Genome Editing for Precision Crop Breeding

Genome Editing for Precision Crop Breeding PDF

Author: Matthew R. Willmann

Publisher: Burleigh Dodds Series in Agricultural Science

Published: 2021

Total Pages: 0

ISBN-13: 9781786764478

DOWNLOAD EBOOK →

Part 1 of this volume reviews advances in gene editing techniques such as insertion-based genome edits, base editing, guide RNAs and CRISPR/Cas off targeting. Part 2 surveys applications of gene editing in key cereal and vegetable crops.