Coupled Thermo-Hydro-Mechanical Processes in Fractured Rock Masses

Coupled Thermo-Hydro-Mechanical Processes in Fractured Rock Masses PDF

Author: Fengshou Zhang

Publisher: Springer Nature

Published: 2023-09-11

Total Pages: 316

ISBN-13: 3031257871

DOWNLOAD EBOOK →

The subject of thermo-hydro-mechanical coupled processes in fractured rock masses has close relevance to energy-related deep earth engineering activities, such as enhanced geothermal systems, geological disposal of radioactive waste, sequestration of CO2, long-term disposal of waste water and recovery of hydrocarbons from unconventional reservoirs. Despite great efforts by engineers and researchers, comprehensive understanding of the thermo-hydro-mechanical coupled processes in fractured rock mass remains a great challenge. The discrete element method (DEM), originally developed by Dr. Peter Cundall, has become widely used for the modeling of a rock mass, including its deformation, damage, fracturing and stability. DEM modeling of the coupled thermo-hydro-mechanical processes in fractured rock masses can provide some unique insights, to say the least, for better understanding of those complex issues. The authors of this book have participated in various projects involving DEM modeling of coupled thermo-hydro-mechanical processes during treatment of a rock mass by fluid injection and/or extraction and have provided consulting services to some of the largest oil-and-gas companies in the world. The breadth and depth of our engineering expertise are reflected by its successful applications in the major unconventional plays in the world, including Permian, Marcellus, Bakken, Eagle Ford, Horn River, Chicontepec, Sichuan, Ordos and many more. The unique combination of the state-of-the-art numerical modeling techniques with state-of-the-practice engineering applications makes the presented material relevant and valuable for engineering practice. We believe that it is beneficial to share the advances on this subject and promote some further development.

Coupled Thermo-Hydro-Mechanical-Chemical Processes in Fractured Rocks

Coupled Thermo-Hydro-Mechanical-Chemical Processes in Fractured Rocks PDF

Author: Zhihong Zhao

Publisher: Springer Nature

Published: 2023-11-12

Total Pages: 267

ISBN-13: 9819962102

DOWNLOAD EBOOK →

This book presents the coupled Thermo-Hydro-Mechanical-Chemical (THMC) processes in fractured rocks at varying scales from single fractures to fracture networks. It also discussed the implication and potential application of the advanced understanding of coupled THMC processes in fractured rocks for geotechnical and geo-energy engineering.

Coupled Thermo-Hydro-Mechanical-Chemical Processes in Geo-systems

Coupled Thermo-Hydro-Mechanical-Chemical Processes in Geo-systems PDF

Author: Ove Stephansson

Publisher: Elsevier

Published: 2004-11-03

Total Pages: 853

ISBN-13: 0080530060

DOWNLOAD EBOOK →

Among the most important and exciting current steps forward in geo-engineering is the development of coupled numerical models. They represent the basic physics of geo-engineering processes which can include the effects of heat, water, mechanics and chemistry. Such models provide an integrating focus for the wide range of geo-engineering disciplines. The articles within this volume were originally presented at the inaugural GeoProc conference held in Stockholm and contain a collection of unusually high quality information not available elsewhere in an edited and coherent form. This collection not only benefits from the latest theoretical developments but also applies them to a number of practical and wide ranging applications. Examples include the environmental issues around radioactive waste disposal deep in rock, and the search for new reserves of oil and gas.

Coupled Thermo-Hydro-Mechanical Processes of Fractured Media

Coupled Thermo-Hydro-Mechanical Processes of Fractured Media PDF

Author: O. Stephanson

Publisher: Elsevier

Published: 1997-02-10

Total Pages: 597

ISBN-13: 0080542859

DOWNLOAD EBOOK →

This work brings together the results, information and data that emerged from an international cooperative project, DECOVALEX, 1992-1995. This project was concerned with the mathematical and experimental studies of coupled thermo(T) -hydro(H) -mechanical(M) processes in fractured media related to radioactive waste disposal. The book presents, for the first time, the systematic formulation of mathematical models of the coupled T-H-M processes of fractured media, their validation against theoretical bench-mark tests, and experimental studies at both laboratory and field scales. It also presents, for the first time, a comprehensive analysis of continuum, and discrete approaches to the study of the problems of (as well as a complete description of), the computer codes applied to the studies. The first two chapters provide a conceptual introduction to the coupled T-H-M processes in fractured media and the DECOVALEX project. The next seven chapters give a state-of-the-art survey of the constitutive models of rock fractures and formulation of coupled T-H-M phenomena with continuum and discontinuum approaches, and associated numerical methods. A study on the three generic Bench-Mark Test problems and six Test Case problems of laboratory and field experiments are reported in chapters 10 to 18. Chapter 19 contains lessons learned during the project. The research contained in this book will be valuable for designers, practising engineers and national waste management officials who are concerned with planning, design and performance, and safety assessments of radioactive waste repositories. Researchers and postgraduate students working in this field will also find the book of particular relevance.

Thermo-Hydro-Mechanical Coupling in Fractured Rock

Thermo-Hydro-Mechanical Coupling in Fractured Rock PDF

Author: Hans-Joachim Kümpel

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 355

ISBN-13: 3034880839

DOWNLOAD EBOOK →

(4). The next three papers extend these views by taking a closer look on parameters that govern hydraulic diffusivity in sandstones and other types of rocks. Specific targets addressed are the influence of differential stress on permeability (5), imaging of the fracture geometry (6), and pressure induced variations in the pore geometry (7). Contributions no. 8 to 10 cover investigations of permeability-porosity relationships during rock evolution (8), of the formation, propagation, and roughness of fractures in a plexi-glass block (9), and pressure oscillation effects of two-phase flow under controlled conditions (10). The subsequent four articles focus on diverse modeling approaches. Issues considered are how the geometry and the mechanical behavior of fractures can be characterized by mathematical expressions (11), how the evolution of permeability in a microcracking rock can be expressed by an analytical model (12), deviations from the cubic law for a fracture of varying aperture (13), and the numerical simulation of scale effects in flow through fractures (14). Three further papers refer to in situ observations, being related to topics as the assessment of in situ permeability from the spatio temporal distribution of an aftershock sequence (15), to the scale dependence of hydraulic pathways in crystalline rock (16), and to the significance of pore pressure - stress coupling in deep tunnels and galleries (17).

Fundamentals of Discrete Element Methods for Rock Engineering: Theory and Applications

Fundamentals of Discrete Element Methods for Rock Engineering: Theory and Applications PDF

Author: Lanru Jing

Publisher: Elsevier

Published: 2007-07-18

Total Pages: 563

ISBN-13: 0080551858

DOWNLOAD EBOOK →

This book presents some fundamental concepts behind the basic theories and tools of discrete element methods (DEM), its historical development, and its wide scope of applications in geology, geophysics and rock engineering. Unlike almost all books available on the general subject of DEM, this book includes coverage of both explicit and implicit DEM approaches, namely the Distinct Element Methods and Discontinuous Deformation Analysis (DDA) for both rigid and deformable blocks and particle systems, and also the Discrete Fracture Network (DFN) approach for fluid flow and solute transport simulations. The latter is actually also a discrete approach of importance for rock mechanics and rock engineering. In addition, brief introductions to some alternative approaches are also provided, such as percolation theory and Cosserat micromechanics equivalence to particle systems, which often appear hand-in-hand with the DEM in the literature. Fundamentals of the particle mechanics approach using DEM for granular media is also presented. · Presents the fundamental concepts of the discrete models for fractured rocks, including constitutive models of rock fractures and rock masses for stress, deformation and fluid flow · Provides a comprehensive presentation on discrete element methods, including distinct elements, discontinuous deformation analysis, discrete fracture networks, particle mechanics and Cosserat representation of granular media · Features constitutive models of rock fractures and fracture system characterization methods detaiing their significant impacts on the performance and uncertainty of the DEM models

Modelling Rock Fracturing Processes

Modelling Rock Fracturing Processes PDF

Author: Ali Asgar Samara

Publisher:

Published: 2016-01-22

Total Pages: 0

ISBN-13: 9781681171647

DOWNLOAD EBOOK →

Hydraulic fracturing is a well-stimulation technique in which rock is fractured by a pressurized liquid. The process involves the high-pressure injection of 'fracking fluid' (primarily water, containing sand and other proppants suspended with the aid of gelling agents) into a wellbore to create cracks in the deep-rock formations through which natural gas, petroleum, and brine will flow more freely. This book describes a unique approach using the principles of rock fracture mechanics to investigate the behaviour of fractured rock masses for rock engineering purposes. Rock fracture mechanics, a promising outgrowth of rock mechanics and fracture mechanics, has developed rapidly in recent years, driven by the need for in-depth understanding of rock mass failure processes in both fundamental research and rock engineering designs. Today, as rock engineering extends into many more challenging fields (like mining at depth, radioactive waste disposal, geothermal energy, and deep and large underground spaces), it requires knowledge of rock masses, complex coupled thermal hydraulic chemical mechanical processes. Rock fracture mechanics play a crucial role in these complex coupled processes simply because rock fractures are the principal carrier and common interface. To date, the demand for rock fracture mechanics based design tools has outstripped the very limited number of numerical tools available. The book also presents the fundamentals of thermo-mechanical coupling and hydro-mechanical coupling. Formulations of multiple regional mechanical, thermal and hydraulic functions, which allow analyses of fracture mechanics problems for structures made of brittle, rock-like materials, are provided. In addition, instructive examples of code verification and applications are presented.

Energy Research Abstracts

Energy Research Abstracts PDF

Author:

Publisher:

Published: 1987

Total Pages: 436

ISBN-13:

DOWNLOAD EBOOK →

Semiannual, with semiannual and annual indexes. References to all scientific and technical literature coming from DOE, its laboratories, energy centers, and contractors. Includes all works deriving from DOE, other related government-sponsored information, and foreign nonnuclear information. Arranged under 39 categories, e.g., Biomedical sciences, basic studies; Biomedical sciences, applied studies; Health and safety; and Fusion energy. Entry gives bibliographical information and abstract. Corporate, author, subject, report number indexes.