Cosmic Ray Neutron Sensing: Estimation of Agricultural Crop Biomass Water Equivalent

Cosmic Ray Neutron Sensing: Estimation of Agricultural Crop Biomass Water Equivalent PDF

Author: Ammar Wahbi

Publisher: Springer

Published: 2018-04-05

Total Pages: 33

ISBN-13: 3319695398

DOWNLOAD EBOOK →

This open access book provides methods for the estimation of Biomass Water Equivalent (BEW), an essential step for improving the accuracy of area-wide soil moisture by cosmic-ray neutron sensors (CRNS). Three techniques are explained in detail: (i) traditional in-situ destructive sampling, (ii) satellite based remote sensing of plant surfaces, and (iii) biomass estimation via the use of the CRNS itself. The advantages and disadvantages of each method are discussed along with step by step instructions on proper procedures and implementation.

Cosmic Ray Neutron Sensing

Cosmic Ray Neutron Sensing PDF

Author: International Atomic Energy Agency

Publisher:

Published: 2017

Total Pages: 0

ISBN-13: 9789201010179

DOWNLOAD EBOOK →

Nuclear and related techniques can help develop climate smart agricultural practices by optimizing water use efficiency. The measurement of soil water content is essential to improve the use of this resource in agriculture. However, most sensors monitor small areas (less than 1m in radius), hence a large number of sensors are needed to obtain soil water content across a large area. This can be both costly and labour intensive and so larger scale measuring devices are needed as an alternative to traditional point-based soil moisture sensing techniques. The cosmic ray neutron sensor (CRNS) is such a device that monitors soil water content in a non-invasive and continuous way. This publication provides background information about this novel technique, and explains in detail the calibration and validation process.

Cosmic Ray Neutron Sensing

Cosmic Ray Neutron Sensing PDF

Author: Ammar Wahbi

Publisher:

Published: 2018

Total Pages: 33

ISBN-13: 9783319695402

DOWNLOAD EBOOK →

This book is published open access under a CC BY 3.0 IGO license. This open access book provides methods for the estimation of Biomass Water Equivalent (BEW), an essential step for improving the accuracy of area-wide soil moisture by cosmic-ray neutron sensors (CRNS). Three techniques are explained in detail: (i) traditional in-situ destructive sampling, (ii) satellite based remote sensing of plant surfaces, and (iii) biomass estimation via the use of the CRNS itself. The advantages and disadvantages of each method are discussed along with step by step instructions on proper procedures and implementation.

Cosmic-ray Neutron Sensing for Soil Moisture Measurements in Cropped Fields

Cosmic-ray Neutron Sensing for Soil Moisture Measurements in Cropped Fields PDF

Author:

Publisher:

Published: 2014

Total Pages: 164

ISBN-13:

DOWNLOAD EBOOK →

This cumulative dissertation explored the use of the detection of natural background of fast neutrons, the so-called cosmic-ray neutron sensing (CRS) approach to measure field-scale soil moisture in cropped fields. Primary cosmic rays penetrate the top atmosphere and interact with atmospheric particles. Such interaction results on a cascade of high-energy neutrons, which continue traveling through the atmospheric column. Finally, neutrons penetrate the soil surface and a second cascade is produced with the so-called secondary cosmic-ray neutrons (fast neutrons). Partly, fast neutrons are absorbed by hydrogen (soil moisture). Remaining neutrons scatter back to the atmosphere, where its flux is inversely correlated to the soil moisture content, therefore allowing a non-invasive indirect measurement of soil moisture. The CRS methodology is mainly evaluated based on a field study carried out on a farmland in Potsdam (Brandenburg, Germany) along three crop seasons with corn, sunflower and winter rye; a bare soil period; and two winter periods. Also, field monitoring was carried out in the Schaefertal catchment (Harz, Germany) for long-term testing of CRS against ancillary data. In the first experimental site, the CRS method was calibrated and validated using different approaches of soil moisture measurements. In a period with corn, soil moisture measurement at the local scale was performed at near-surface only, and in subsequent periods (sunflower and winter rye) sensors were placed in three depths (5 cm, 20 cm and 40 cm). The direct transfer of CRS calibration parameters between two vegetation periods led to a large overestimation of soil moisture by the CRS. Part of this soil moisture overestimation was attributed to an underestimation of the CRS observation depth during the corn period ( 5-10 cm), which was later recalculated to values between 20-40 cm in other crop periods (sunflower and winter rye). According to results from these monitoring periods with different crops, vegetation played an important role on the CRS measurements. Water contained also in crop biomass, above and below ground, produces important neutron moderation. This effect was accounted for by a simple model for neutron corrections due to vegetation. It followed crop development and reduced overall CRS soil moisture error for periods of sunflower and winter rye. In Potsdam farmland also inversely-estimated soil hydraulic parameters were determined at the field scale, using CRS soil moisture from the sunflower period. A modelling framework coupling HYDRUS-1D and PEST was applied. Subsequently, field-scale soil hydraulic properties were compared against local scale soil properties (modelling and measurements). Successful results were obtained here, despite large difference in support volume. Simple modelling framework emphasizes future research directions with CRS soil moisture to parameterize field scale models. In Schaefertal catchment, CRS measurements were verified using precipitation and evapotranspiration data. At the monthly resolution, CRS soil water storage was well correlated to these two weather variables. Also clearly, water balance could not be closed due to missing information from other compartments such as groundwater, catchment discharge, etc. In the catchment, the snow influence to natural neutrons was also evaluated. As also observed in Potsdam farmland, CRS signal was strongly influenced by snow fall and snow accumulation. A simple strategy to measure snow was presented for Schaefertal case. Concluding remarks of this dissertation showed that (a) the cosmic-ray neutron sensing (CRS) has a strong potential to provide feasible measurement of mean soil moisture at the field scale in cropped fields; (b) CRS soil moisture is strongly influenced by other environmental water pools such as vegetation and snow, therefore these should be considered in analysis; (c) CRS water storage can be used for soil hydrology modelling for determination of soil hydraulic parameters; and (d) CRS approach has strong potential for long term monitoring of soil moisture and for addressing studies of water balance.

Soil Moisture Mapping with a Portable Cosmic Ray Neutron Sensor

Soil Moisture Mapping with a Portable Cosmic Ray Neutron Sensor PDF

Author: International Atomic Energy Agency

Publisher:

Published: 2018

Total Pages: 0

ISBN-13: 9789201020185

DOWNLOAD EBOOK →

This publication was developed as an informational guide for soil moisture mapping at landscape level through a portable 'backpack' cosmic-ray neutron sensor. This recently developed device monitors soil water content in a non-invasive way using background neutron counts. It is used to measure water content in the topsoil over wide areas, covering approximately 20 hectares with one single measurement. Through its mobility and combining series of measurements, this provides the spatial variability of the soil water content for better agricultural water management. The publication provides scientists, technicians and students with the necessary information, guidance and steps to calibrate, validate and deploy this portable cosmic-ray neutron sensor.

Cosmic Rays in the Earth’s Atmosphere and Underground

Cosmic Rays in the Earth’s Atmosphere and Underground PDF

Author: Lev Dorman

Publisher: Springer Science & Business Media

Published: 2013-03-19

Total Pages: 891

ISBN-13: 1402021135

DOWNLOAD EBOOK →

The present monograph as well as the next one (Dorman, M2005) is a result of more than 50 years working in cosmic ray (CR) research. After graduation in December 1950 Moscow Lomonosov State University (Nuclear and Elementary Particle Physics Division, the Team of Theoretical Physics), my supervisor Professor D. I. Blokhintsev planned for me, as a winner of a Red Diploma, to continue my education as an aspirant (a graduate student) to prepare for Ph. D. in his very secret Object in the framework of what was in those time called the Atomic Problem. To my regret the KGB withheld permission, and I, together with other Jewish students who had graduated Nuclear Divisions of Moscow and Leningrad Universities and Institutes, were faced with a real prospect of being without any work. It was our good fortune that at that time there was being brought into being the new Cosmic Ray Project (what at that time was also very secret, but not as secret as the Atomic Problem), and after some time we were directed to work on this Project. It was organized and headed by Prof. S. N. Vernov (President of All-Union Section of Cosmic Rays) and Prof. N. V. Pushkov (Director of IZMIRAN); Prof. E. L. Feinberg headed the theoretical part of the Project.

Remote Compositional Analysis

Remote Compositional Analysis PDF

Author: Janice L. Bishop

Publisher: Cambridge University Press

Published: 2019-11-28

Total Pages: 655

ISBN-13: 110718620X

DOWNLOAD EBOOK →

Comprehensive overview of the spectroscopic, mineralogical, and geochemical techniques used in planetary remote sensing.

Sensors Application in Agriculture

Sensors Application in Agriculture PDF

Author: Dimitrios S. Paraforos

Publisher: MDPI

Published: 2020-11-06

Total Pages: 228

ISBN-13: 3039432583

DOWNLOAD EBOOK →

Novel technologies are playing an important role in the development of crop and livestock farming and have the potential to be the key drivers of sustainable intensification of agricultural systems. In particular, new sensors are now available with reduced dimensions, reduced costs, and increased performances, which can be implemented and integrated in production systems, providing more data and eventually an increase in information. It is of great importance to support the digital transformation, precision agriculture, and smart farming, and to eventually allow a revolution in the way food is produced. In order to exploit these results, authoritative studies from the research world are still needed to support the development and implementation of new solutions and best practices. This Special Issue is aimed at bringing together recent developments related to novel sensors and their proved or potential applications in agriculture.