Core Level Spectroscopy of Solids

Core Level Spectroscopy of Solids PDF

Author: Frank de Groot

Publisher: CRC Press

Published: 2008-03-10

Total Pages: 512

ISBN-13: 1420008420

DOWNLOAD EBOOK →

Core level spectroscopy has become a powerful tool in the study of electronic states in solids. From fundamental aspects to the most recent developments, Core Level Spectroscopy of Solids presents the theoretical calculations, experimental data, and underlying physics of x-ray photoemission spectroscopy (XPS), x-ray absorption spectroscopy (XAS), x

Core-Level Spectroscopy in Condensed Systems

Core-Level Spectroscopy in Condensed Systems PDF

Author: Junjiro Kanamori

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 310

ISBN-13: 364283437X

DOWNLOAD EBOOK →

Core-level Spectroscopy in Condensed Systems describes how recent improvement of various experimental methods, together with new light and x-ray sources, have provided fresh information about the electronic states and atomic structures of a wide variety of materials. The topics coveredrange from the high-energy spectroscopy of bulk electronic states of rare-earth and transition metals and compounds, including high T superconductors, to recent developments in photoelectron diffraction and other surface problems, all with emphasis on theoretical aspects.

Electron and Ion Spectroscopy of Solids

Electron and Ion Spectroscopy of Solids PDF

Author: L. Fiermans

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 485

ISBN-13: 1468428179

DOWNLOAD EBOOK →

Surface physics and chemistry have in recent years become one of the most active fields in solid state research. A number of techniques have been developed, and both the experimental aspect and the correlated theory are evolving at an extremely fast rate. Electron and ion spectroscopy are of major importance in this development. In this volume, which contains edited and extended versions of eight sets of lectures given at the NATO Advanced Study Institute held at Ghent, Belgium, from August 29 to September 9, 1977, a re view of the state of the art in these fields is given from both an experimental and a theoretical point of view. Electron emission techniques such as UPS (ultraviolet photoemission spectroscopy), XPS (x-ray photoemission spectroscopy), and AES (Auger electron spectroscopy) constitute the major part of this volume, reflecting the fact that they continue to be the most widely applied surface techniques. Recent developments in the application of synchrotron radiation to angle-resolved photoelectron spectroscopy are extensively covered, from an experimental point of view by Prof. W. E. Spicer (Stanford University, U.S.A.) and from a theoretical point of view by Dr. A. Liebsch (Kernforschungsanlage Julich, Germany). Emphasis is put on the study of energy bands in layered structures, and on chemisorption on well-defined surfaces. Chemisorption and catalysis on metals is treated in detail by Prof. G. Ertl (Universitat Munchen, Germany). This chapter contains a review of the application of the different surface techniques to specific surface systems.

Solid-State Spectroscopy

Solid-State Spectroscopy PDF

Author: Hans Kuzmany

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 455

ISBN-13: 3662035944

DOWNLOAD EBOOK →

This text is an introductory compilation of basic concepts, methods and applications in the field of spectroscopy. It discusses new radiation sources such as lasers and synchrotrons and describes the linear response together with the basic principles and the technical background for various scattering experiments.

Proceedings of the 11th International Conference on Vacuum Ultraviolet Radiation Physics

Proceedings of the 11th International Conference on Vacuum Ultraviolet Radiation Physics PDF

Author: T. Miyahara

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 590

ISBN-13: 0444597190

DOWNLOAD EBOOK →

These volumes contain 365 of the 505 papers presented at the VUV-11 Conference, held at Rikkyo University, Tokyo, from August 27th to September 1st 1995. The papers are divided into three sections: atomic and molecular spectroscopy, solid state spectroscopy and instrumentation and technological applications. New aspects presented were both quantitative and qualitative improvements in fluorescence spectroscopy and magnetic circular dichroism measurements. The fluorescence data are complementary to those of photoemission in a sense but they appear to open up a new method to analyze the optical excitation and relaxation processes. The application of magnetic circular dichroism has proved to be useful not only in analyzing the electronic structures of magnetic materials but also in practical applications to material engineering as found in experiments combined with photoelectron microscopy. Excellent developments in applications are only found in the field of surface photochemistry, where the technique of etching using VUV light has been appreciably refined. Although the majority of distinctive scientific features in the VUV-11 Conference have been brought about by the application of synchrotron radiation, experiments using a different type of light source appear to have progressed steadily. This is evident in the studies of plasma radiation.

Synchrotron Radiation Research

Synchrotron Radiation Research PDF

Author: R.Z. Bachrach

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 532

ISBN-13: 1461532809

DOWNLOAD EBOOK →

In the summer of 1972, I had the privilege and responsibility of organizing a Gordon Conference on the "High-Energy Spectroscopy of Solids." The Thursday evening session focused on future directions for high-energy spectroscopy. The possibilities associated with synchrotron radiation for future research became a central issue. I was asked to choose the members of the panel and chair the session. Although all five members of the panel went on to have distinguished careers using synchrotron radiation, at the time some of them were skeptical about the future role of synchrotron radiation sources in high-energy photon spectroscopy. The discussion became heated, and many members of the audience spoke, both pro and con. One member of the panel produced a detailed argument that synchrotron radiation would never rival standard X-ray tubes. We found out that there were estimates for properties of synchrotrons that differed by orders of magnitude from those of X-ray tubes. That much uncertainty was expressed at a meeting that took place less than twenty years ago. It is hard to believe that, even though at that time synchrotron radiation was already being used for photoemission studies of solids and surfaces and intershell excitations in solids, the potential impact and importance of this area was not fully realized even by the experts. Today synchrotron radiation is one of the primary tools for studying surfaces, and synchrotron radiation has affected many other areas of condensed-matter physics---even superconductivity.

Solid-State Photoemission and Related Methods

Solid-State Photoemission and Related Methods PDF

Author: Wolfgang Schattke

Publisher: John Wiley & Sons

Published: 2008-09-26

Total Pages: 515

ISBN-13: 3527621008

DOWNLOAD EBOOK →

Photoemission is one of the principal techniques for the characterization and investigation of condensed matter systems. The field has experienced many developments in recent years, which may also be put down to important achievements in closely related areas. This timely and up-to-date handbook is written by experts in the field who provide the background needed by both experimentalists and theorists. It represents an interesting framework for showing the connection between theory and experiment by bringing together different concepts in the investigation of the properties of materials. The work addresses the geometric and electronic structure of solid surfaces and interfaces, theoretical methods for direct computation of spectra, experimental techniques for data acquisition, and physical models for direct data interpretation. It also includes such recent developments as full hemisphere acceptance in photoemission, two-electron photoemission, (e, 2e) electron diffraction, and photoelectron-electron/hole interaction.