Conversion of Water and CO2 to Fuels using Solar Energy

Conversion of Water and CO2 to Fuels using Solar Energy PDF

Author: Oomman K. Varghese

Publisher: John Wiley & Sons

Published: 2024-02-28

Total Pages: 421

ISBN-13: 1119600847

DOWNLOAD EBOOK →

Conversion of Water and CO2 to Fuels usingSolar Energy Comprehensive Resource for Understanding the Emerging Solar Technologies for Hydrogen Generation via Water Splitting and Carbon-based Fuel Production via CO2 Recycling Fossil fuel burning is the primary source of carbon in the atmosphere. The realization that such burning can harm the life on our planet, has led to a surge in research activities that focus on the development of alternative strategies for energy conversion. Fuel generation using solar energy is one of the most promising approaches that has received widespread attention. The fuels produced using sunlight are commonly referred to as “solar fuels.” This book provides researchers interested in solar fuel generation a comprehensive understanding of the emerging solar technologies for hydrogen generation via water splitting and carbon-based fuel production via CO2 recycling. The book presents the fundamental science, technologies, techno-economic analysis, and most importantly, the materials that are being explored to establish artificial methods of fuel production using solar energy. For the rapid advancement of the field, it is necessary for researchers, particularly for those who are new to the field, to have clear knowledge of various materials studied so far and their performance. For this reason, almost half of the book is dedicated to the discussions on materials and properties. Key topics discussed in the book include: Photocatalytic/photoelectrochemical processes that use semiconductor photocatalysts, including both ceramic and non-ceramic materials Photovoltaic assisted electrochemical processes Solar thermochemical processes Molecular photosynthesis Researchers and professionals in the fields of energy and materials and closely related science and engineering disciplines could use this book to aquire clear insights on both mainstream solar fuel technologies and those in the developmental stages.

Conversion of Water and CO2 to Fuels using Solar Energy

Conversion of Water and CO2 to Fuels using Solar Energy PDF

Author: Oomman K. Varghese

Publisher: John Wiley & Sons

Published: 2024-02-05

Total Pages: 421

ISBN-13: 1119600898

DOWNLOAD EBOOK →

Conversion of Water and CO2 to Fuels usingSolar Energy Comprehensive Resource for Understanding the Emerging Solar Technologies for Hydrogen Generation via Water Splitting and Carbon-based Fuel Production via CO2 Recycling Fossil fuel burning is the primary source of carbon in the atmosphere. The realization that such burning can harm the life on our planet, has led to a surge in research activities that focus on the development of alternative strategies for energy conversion. Fuel generation using solar energy is one of the most promising approaches that has received widespread attention. The fuels produced using sunlight are commonly referred to as “solar fuels.” This book provides researchers interested in solar fuel generation a comprehensive understanding of the emerging solar technologies for hydrogen generation via water splitting and carbon-based fuel production via CO2 recycling. The book presents the fundamental science, technologies, techno-economic analysis, and most importantly, the materials that are being explored to establish artificial methods of fuel production using solar energy. For the rapid advancement of the field, it is necessary for researchers, particularly for those who are new to the field, to have clear knowledge of various materials studied so far and their performance. For this reason, almost half of the book is dedicated to the discussions on materials and properties. Key topics discussed in the book include: Photocatalytic/photoelectrochemical processes that use semiconductor photocatalysts, including both ceramic and non-ceramic materials Photovoltaic assisted electrochemical processes Solar thermochemical processes Molecular photosynthesis Researchers and professionals in the fields of energy and materials and closely related science and engineering disciplines could use this book to aquire clear insights on both mainstream solar fuel technologies and those in the developmental stages.

Electrochemical Reduction of Carbon Dioxide

Electrochemical Reduction of Carbon Dioxide PDF

Author: Jinli Qiao

Publisher: CRC Press

Published: 2016-07-06

Total Pages: 468

ISBN-13: 1138032093

DOWNLOAD EBOOK →

For Researchers, Students, Industrial Professionals, and ManufacturersElectrochemical Reduction of Carbon Dioxide: Fundamentals and Technologies is your guide to improved catalytic performance in the electrochemical reduction of carbon dioxide (CO2). Written by electrochemical energy scientists actively involved in environmental research and develo

Carbon Dioxide Utilization to Sustainable Energy and Fuels

Carbon Dioxide Utilization to Sustainable Energy and Fuels PDF

Author: Inamuddin

Publisher: Springer Nature

Published: 2021-11-30

Total Pages: 354

ISBN-13: 3030728773

DOWNLOAD EBOOK →

This edited book provides an in-depth overview of carbon dioxide (CO2) transformations to sustainable power technologies. It also discusses the wide scope of issues in engineering avenues, key designs, device fabrication, characterizations, various types of conversions and related topics. It includes studies focusing on the applications in catalysis, energy conversion and conversion technologies, etc. This is a unique reference guide, and one of the detailed works is on this technology. The book is the result of commitments by leading researchers from various backgrounds and expertise. The book is well structured and is an essential resource for scientists, undergraduate, postgraduate students, faculty, R&D professionals, energy chemists and industrial experts.

Solar to Chemical Energy Conversion

Solar to Chemical Energy Conversion PDF

Author: Masakazu Sugiyama

Publisher: Springer

Published: 2016-01-25

Total Pages: 472

ISBN-13: 3319254006

DOWNLOAD EBOOK →

This book explains the conversion of solar energy to chemical energy and its storage. It covers the basic background; interface modeling at the reacting surface; energy conversion with chemical, electrochemical and photoelectrochemical approaches and energy conversion using applied photosynthesis. The important concepts for converting solar to chemical energy are based on an understanding of the reactions’ equilibrium and non-equilibrium conditions. Since the energy conversion is essentially the transfer of free energy, the process are explained in the context of thermodynamics.

Green Carbon Dioxide

Green Carbon Dioxide PDF

Author: Gabriele Centi

Publisher: John Wiley & Sons

Published: 2014-01-17

Total Pages: 284

ISBN-13: 1118831942

DOWNLOAD EBOOK →

PROMISING NEW APPROACHES TO RECYCLE CARBON DIOXIDE AND REDUCE EMISSIONS With this book as their guide, readers will learn a variety of new approaches and methods to recycle and reuse carbon dioxide (CO2) in order to produce green fuels and chemicals and, at the same time, minimize CO2 emissions. The authors demonstrate how to convert CO2 into a broad range of essential products by using alternative green energy sources, such as solar, wind, and hydro-power as well as sustainable energy sources. Readers will discover that CO2 can be a driving force for the sustainable future of both the chemical industry and the energy and fuels industry. Green Carbon Dioxide features a team of expert authors, offering perspectives on the latest breakthroughs in CO2 recycling from Asia, Europe, and North America. The book begins with an introduction to the production of CO2-based fuels and chemicals. Next, it covers such topics as: Transformation of CO2 to useable products through free-radical-induced reactions Hydrogenation of CO2 to liquid fuels Direct synthesis of organic carbonates from CO2 and alcohols using heterogeneous oxide catalysts Electrocatalytic reduction of CO2 in methanol medium Fuel production from photocatalytic reduction of CO2 with water using TiO2-based nanocomposites Use of CO2 in enhanced oil recovery and carbon capture and sequestration More than 1,000 references enable readers to explore individual topics in greater depth. Green Carbon Dioxide offers engineers, chemists, and managers in the chemical and energy and fuel industries a remarkable new perspective, demonstrating how CO2 can play a significant role in the development of a sustainable Earth.

Solar-to-Chemical Conversion

Solar-to-Chemical Conversion PDF

Author: Hongqi Sun

Publisher: John Wiley & Sons

Published: 2021-06-28

Total Pages: 482

ISBN-13: 3527347186

DOWNLOAD EBOOK →

This comprehensive book systematically covers the fundamentals in solar energy conversion to chemicals, either fuels or chemical products. It includes natural photosynthesis with emphasis on artificial processes for solar energy conversion and utilization. The chemical processes of solar energy conversion via homogeneous and/or heterogeneous photocatalysis has been described with the mechanistic insights. It also consists of reaction systems toward a variety of applications, such as water splitting for hydrogen or oxygen evolution, photocatalytic CO2 reduction to fuels, and light driven N2 fixation, etc. This unique book offers the readers a broad view of solar energy utilization based on chemical processes and their perspectives for future sustainability.

Solar Reforming of Carbon Dioxide to Produce Diesel Fuel

Solar Reforming of Carbon Dioxide to Produce Diesel Fuel PDF

Author:

Publisher:

Published: 2010

Total Pages:

ISBN-13:

DOWNLOAD EBOOK →

This project focused on the demonstration of an innovative technology, referred to as the Sunexus CO2 Solar Reformer, which utilizes waste CO2 as a feedstock for the efficient and economical production of synthetic diesel fuel using solar thermal energy as the primary energy input. The Sunexus technology employs a two stage process for the conversion of CO2 to diesel fuel. A solar reforming system, including a specially designed reactor and proprietary CO2 reforming catalyst, was developed and used to convert captured CO2 rich gas streams into syngas (primarily hydrogen and carbon monoxide) using concentrated solar energy at high conversion efficiencies. The second stage of the system (which has been demonstrated under other funding) involves the direct conversion of the syngas into synthetic diesel fuel using a proprietary catalyst (Terra) previously developed and validated by Pacific Renewable Fuels and Chemicals (PRFC). The overall system energy efficiency for conversion of CO2 to diesel fuel is 74%, due to the use of solar energy. The results herein describe modeling, design, construction, and testing of the Sunexus CO2 Solar Reformer. Extensive parametric testing of the solar reformer and candidate catalysts was conducted and chemical kinetic models were developed. Laboratory testing of the Solar Reformer was successfully completed using various gas mixtures, temperatures, and gas flow rates/space velocities to establish performance metrics which can be employed for the design of commercial plants. A variety of laboratory tests were conducted including dry reforming (CO2 and CH4), combination dry/steam reforming (CO2, CH4 & H2O), and tri-reforming (CO2, CH4, H2O & O2). CH4 and CO2 conversions averaged 95-100% and 50-90% per reformer cycle, respectively, depending upon the temperatures and gas space velocities. No formation of carbon deposits (coking) on the catalyst was observed in any of these tests. A 16 ft. diameter, concentrating solar dish was modified to accommodate the Sunexus CO2 Solar Reformer and the integrated system was installed at the Pacific Renewable Fuels and Chemicals test site at McClellan, CA. Several test runs were conducted without catalyst during which the ceramic heat exchanger in the Sunexus Solar Reformer reached temperatures between 1,050 F (566 C) and 2,200 F (1,204 C) during the test period. A dry reforming mixture of CO2/CH4 (2.0/1.0 molar ratio) was chosen for all of the tests on the integrated solar dish/catalytic reformer during December 2010. Initial tests were carried out to determine heat transfer from the collimated solar beam to the catalytic reactor. The catalyst was operated successfully at a steady-state temperature of 1,125 F (607 C), which was sufficient to convert 35% of the 2/1 CO2/CH4 mixture to syngas. This conversion efficiency confirmed the results from laboratory testing of this catalyst which provided comparable syngas production efficiencies (40% at 1,200 F [650 C]) with a resulting syngas composition of 20% CO, 16% H2, 39% CO2 and 25% CH4. As based upon the laboratory results, it is predicted that 90% of the CO2 will be converted to syngas in the solar reformer at 1,440 F (782 C) resulting in a syngas composition of 50% CO: 43% H2: 7% CO2: 0% CH4. Laboratory tests show that the higher catalyst operating temperature of 1,440 F (782 C) for efficient conversion of CO2 can certainly be achieved by optimizing solar reactor heat transfer, which would result in the projected 90% CO2-to-syngas conversion efficiencies. Further testing will be carried out during 2011, through other funding support, to further optimize the solar dish CO2 reformer. Additional studies carried out in support of this project and described in this report include: (1) An Assessment of Potential Contaminants in Captured CO2 from Various Industrial Processes and Their Possible Effect on Sunexus CO2 Reforming Catalysts; (2) Recommended Measurement Methods for Assessing Contaminant Levels in Captured CO2 Streams; (3) An Assessment of Current Commercial Scale Fisher-Tropsch (F-T) Technologies for the Conversion of Syngas to Fuels; (4) An Overview of CO2 Capture Technologies from Various Industrial Sources; and (5) Lifecycle Analysis for the Capture and Conversion of CO2 to Synthetic Diesel Fuel. Commercial scale Sunexus CO2 Solar Reformer plant designs, proposed in this report, should be able to utilize waste CO2 from a wide variety of industrial sources to produce a directly usable synthetic diesel fuel that replaces petroleum derived fuel, thus improving the United States energy security while also sequestering CO2. Our material balance model shows that every 5.0 lbs of CO2 is transformed using solar energy into 6.26 lbs (1.0 U.S. gallon) of diesel fuel and into by-products, which includes water. Details are provided in the mass and energy model in this report.

Solar Fuels

Solar Fuels PDF

Author: Nurdan Demirci Sankir

Publisher: John Wiley & Sons

Published: 2023-04-20

Total Pages: 436

ISBN-13: 1119752086

DOWNLOAD EBOOK →

SOLAR FUELS In this book, you will have the opportunity to have comprehensive knowledge about the use of energy from the sun, which is our source of life, by converting it into different chemical fuels as well as catching up with the latest technology. The most important obstacle to solar meeting all our energy needs is that solar energy is not always accessible and, therefore, cannot be used when needed. Consequently, the conversion of solar energy into chemical energy, which has become increasingly important in recent years, is a groundbreaking topic in the field of renewable energy. This type of chemical energy is called solar fuel. Hydrogen, methanol, methane, and carbon monoxide are among the solar fuels, which can be produced via solar-thermal, artificial photosynthesis, photocatalytic or photoelectrochemical routes. Solar Fuels compiles the objectives related to the new semiconductor materials and manufacturing techniques for solar fuel generation. Chapters are written by distinguished authors who have extensive experience in their fields. A multidisciplinary contributor profile, including chemical engineering, materials science, environmental engineering, and mechanical and aerospace engineering provides a broader point of view and coverage of the topic. Therefore, readers absolutely will have a chance to learn about not only the fundamentals, but also the various aspects of materials science and manufacturing technologies for solar fuel production. Moreover, readers from diverse fields should take advantage of this book to comprehend the impacts of solar energy conversion in chemical form. Audience The book will be of interest to a multidisciplinary group of fields in industry and academia, including physics, chemistry, materials science, biochemical engineering, optoelectronic information, photovoltaic and renewable energy engineering, electrochemistry, electrical engineering, and mechanical and manufacturing engineering.

Photoelectrochemical Solar Fuel Production

Photoelectrochemical Solar Fuel Production PDF

Author: Sixto Giménez

Publisher: Springer

Published: 2016-04-29

Total Pages: 574

ISBN-13: 3319296418

DOWNLOAD EBOOK →

This book explores the conversion for solar energy into renewable liquid fuels through electrochemical reactions. The first section of the book is devoted to the theoretical fundamentals of solar fuels production, focusing on the surface properties of semiconductor materials in contact with aqueous solutions and the reaction mechanisms. The second section describes a collection of current, relevant characterization techniques, which provide essential information of the band structure of the semiconductors and carrier dynamics at the interface semiconductor. The third, and last section comprises the most recent developments in materials and engineered structures to optimize the performance of solar-to-fuel conversion devices.