Computing with Memory for Energy-Efficient Robust Systems

Computing with Memory for Energy-Efficient Robust Systems PDF

Author: Somnath Paul

Publisher: Springer Science & Business Media

Published: 2013-09-07

Total Pages: 210

ISBN-13: 1461477980

DOWNLOAD EBOOK →

This book analyzes energy and reliability as major challenges faced by designers of computing frameworks in the nanometer technology regime. The authors describe the existing solutions to address these challenges and then reveal a new reconfigurable computing platform, which leverages high-density nanoscale memory for both data storage and computation to maximize the energy-efficiency and reliability. The energy and reliability benefits of this new paradigm are illustrated and the design challenges are discussed. Various hardware and software aspects of this exciting computing paradigm are described, particularly with respect to hardware-software co-designed frameworks, where the hardware unit can be reconfigured to mimic diverse application behavior. Finally, the energy-efficiency of the paradigm described is compared with other, well-known reconfigurable computing platforms.

The Internet of Things and Big Data Analytics

The Internet of Things and Big Data Analytics PDF

Author: Pethuru Raj

Publisher: CRC Press

Published: 2020-06-07

Total Pages: 328

ISBN-13: 1000057399

DOWNLOAD EBOOK →

This book comprehensively conveys the theoretical and practical aspects of IoT and big data analytics with the solid contributions from practitioners as well as academicians. This book examines and expounds the unique capabilities of the big data analytics platforms in capturing, cleansing and crunching IoT device/sensor data in order to extricate actionable insights. A number of experimental case studies and real-world scenarios are incorporated in this book in order to instigate our book readers. This book Analyzes current research and development in the domains of IoT and big data analytics Gives an overview of latest trends and transitions happening in the IoT data analytics space Illustrates the various platforms, processes, patterns, and practices for simplifying and streamlining IoT data analytics The Internet of Things and Big Data Analytics: Integrated Platforms and Industry Use Cases examines and accentuates how the multiple challenges at the cusp of IoT and big data can be fully met. The device ecosystem is growing steadily. It is forecast that there will be billions of connected devices in the years to come. When these IoT devices, resource-constrained as well as resource-intensive, interact with one another locally and remotely, the amount of multi-structured data generated, collected, and stored is bound to grow exponentially. Another prominent trend is the integration of IoT devices with cloud-based applications, services, infrastructures, middleware solutions, and databases. This book examines the pioneering technologies and tools emerging and evolving in order to collect, pre-process, store, process and analyze data heaps in order to disentangle actionable insights.

Energy Efficient High Performance Processors

Energy Efficient High Performance Processors PDF

Author: Jawad Haj-Yahya

Publisher: Springer

Published: 2018-04-04

Total Pages: 165

ISBN-13: 9789811085536

DOWNLOAD EBOOK →

This book explores energy efficiency techniques for high-performance computing (HPC) systems using power-management methods. Adopting a step-by-step approach, it describes power-management flows, algorithms and mechanism that are employed in modern processors such as Intel Sandy Bridge, Haswell, Skylake and other architectures (e.g. ARM). Further, it includes practical examples and recent studies demonstrating how modem processors dynamically manage wide power ranges, from a few milliwatts in the lowest idle power state, to tens of watts in turbo state. Moreover, the book explains how thermal and power deliveries are managed in the context this huge power range. The book also discusses the different metrics for energy efficiency, presents several methods and applications of the power and energy estimation, and shows how by using innovative power estimation methods and new algorithms modern processors are able to optimize metrics such as power, energy, and performance. Different power estimation tools are presented, including tools that break down the power consumption of modern processors at sub-processor core/thread granularity. The book also investigates software, firmware and hardware coordination methods of reducing power consumption, for example a compiler-assisted power management method to overcome power excursions. Lastly, it examines firmware algorithms for dynamic cache resizing and dynamic voltage and frequency scaling (DVFS) for memory sub-systems.

Your Genes, Your Choices

Your Genes, Your Choices PDF

Author: Catherine Baker

Publisher:

Published: 1996

Total Pages: 96

ISBN-13: 9780871686367

DOWNLOAD EBOOK →

Program discusses the Human Genome Project, the science behind it, and the ethical, legal and social issues raised by the project.

A Design Methodology for Robust, Energy-efficient, Application-aware Memory Systems

A Design Methodology for Robust, Energy-efficient, Application-aware Memory Systems PDF

Author: Subho Chatterjee

Publisher:

Published: 2012

Total Pages:

ISBN-13:

DOWNLOAD EBOOK →

Memory design is a crucial component of VLSI system design from area, power and performance perspectives. To meet the increasingly challenging system specifications, architecture, circuit and device level innovations are required for existing memory technologies. Emerging memory solutions are widely explored to cater to strict budgets. This thesis presents design methodologies for custom memory design with the objective of power-performance benefits across specific applications. Taking example of STTRAM (spin transfer torque random access memory) as an emerging memory candidate, the design space is explored to find optimal energy design solution. A thorough thermal reliability study is performed to estimate detection reliability challenges and circuit solutions are proposed to ensure reliable operation. Adoption of the application-specific optimal energy solution is shown to yield considerable energy benefits in a read-heavy application called MBC (memory based computing). Circuit level customizations are studied for the volatile SRAM (static random access memory) memory, which will provide improved energy-delay product (EDP) for the same MBC application. Memory design has to be aware of upcoming challenges from not only the application nature but also from the packaging front. Taking 3D die-folding as an example, SRAM performance shift under die-folding is illustrated. Overall the thesis demonstrates how knowledge of the system and packaging can help in achieving power efficient and high performance memory design.

Content-aware Memory Systems for High-performance, Energy-efficient Data Movement

Content-aware Memory Systems for High-performance, Energy-efficient Data Movement PDF

Author: Shibo Wang

Publisher:

Published: 2017

Total Pages: 173

ISBN-13:

DOWNLOAD EBOOK →

"Power dissipation and limited memory bandwidth are significant bottlenecks in virtually all computer systems, from datacenters to mobile devices. The memory subsystem is responsible for a significant and growing fraction of the total system energy due to data movement throughout the memory hierarchy. These energy and performance problems become more severe as emerging data-intensive applications place a larger fraction of the data in memory, and require substantial data processing and transmission capabilities. As a result, it is critical to architect novel, energy- and bandwidth-efficient memory systems and data access mechanisms for future computer systems. Existing memory systems are largely oblivious to the contents of the transferred or stored data. However, the transmission and storage costs of data with different contents often differ, which creates new possibilities to reduce the attendant data movement overheads. This dissertation investigates both content aware transmission and storage mechanisms in conventional DRAM systems, such as DDRx, and emerging memory architectures, such as Hybrid Memory Cube (HMC). Content aware architectural techniques are developed to improve the performance and energy efficiency of the memory hierarchy. The dissertation first presents a new energy-efficient data encoding mechanism based on online data clustering that exploits asymmetric data movement costs. One promising way of reducing the data movement energy is to design the interconnect such that the transmission of 0s is considerably cheaper than that of 1s. Given such an interconnect with asymmetric transmission costs, data movement energy can be reduced by encoding the transmitted data such that the number of 1s in each transmitted codeword is minimized. In the proposed coding scheme, the transmitted data blocks are dynamically grouped into clusters based on the similarities between their binary representations. Each cluster has a center with a bit pattern close to those of the data blocks that belong to that cluster. Each transmitted data block is expressed as the bitwise XOR between the nearest cluster center and a sparse residual with a small number of 1s. The data movement energy is minimized by sending the sparse residual along with an identifier that specifies which cluster center to use in decoding the transmitted data. At runtime, the proposed approach continually updates the cluster centers based on the observed data to adapt to phase changes. By dynamically learning and adjusting the cluster centers, the Hamming distance between each data block and the nearest cluster center can be significantly reduced. As a result, the total number of 1s in the transmitted residual is lowered, leading to substantial savings in data movement energy. The dissertation then introduces content aware refresh - a novel DRAM refresh method that reduces the refresh rate by exploiting the unidirectional nature of DRAM retention errors: assuming that a logical 1 and 0 respectively are represented by the presence and absence of charge, 1-to-0 failures dominate the retention errors. As a result, in a DRAM system that uses a block error correcting code (ECC) to protect memory from errors, blocks with fewer 1s exhibit a lower probability of encountering an uncorrectable error. Such blocks can attain a specified reliability target with a refresh rate lower than what is required for a block with all 1s. Leveraging this key insight, and without compromising memory reliability, the proposed content aware refresh mechanism refreshes memory blocks with fewer 1s less frequently. In the proposed content-aware refresh mechanism, the refresh rate of a refresh group - a group of DRAM rows refreshed together?is decided based on the worst case ECC block in that group, which is the block with the greatest number of 1s. In order to keep the overhead of tracking multiple refresh rates manageable, multiple refresh groups are dynamically arranged into one of a predefined number of refresh bins and refreshed at the same rate. To reduce the number of refresh operations, both the refresh rates of the bins and the refresh group-to-bin assignments are adaptively changed at runtime. By tailoring the refresh rate to the actual content of a memory block rather than assuming a worst case data pattern, the proposed content aware refresh technique effectively avoids unnecessary refresh operations and significantly improves the performance and energy efficiency of DRAM systems. Finally, the dissertation examines a novel HMC power management solution that enables energy-efficient HMC systems with erasure codes. The key idea is to encode multiple blocks of data in a single coding block that is distributed among all of the HMC modules in the system, and to store the resulting check bits in a dedicated, always-on HMC. The inaccessible data that are stored in a sleeping HMC module can be reconstructed by decoding a subset of the remaining memory blocks retrieved from other active HMCs, rather than waiting for the sleeping HMC module to become active. A novel data selection policy is used to decide which data to encode at runtime, significantly increasing the probability of reconstructing otherwise inaccessible data. The coding procedure is optimized by leveraging the near memory computing capability of the HMC logic layer. This approach makes it possible to tolerate the latency penalty incurred when switching an HMC between active and sleep modes, thereby enabling a power-capped HMC system."--Pages xi-xiv.

Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design

Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design PDF

Author: Nan Zheng

Publisher: John Wiley & Sons

Published: 2019-10-18

Total Pages: 389

ISBN-13: 1119507405

DOWNLOAD EBOOK →

Explains current co-design and co-optimization methodologies for building hardware neural networks and algorithms for machine learning applications This book focuses on how to build energy-efficient hardware for neural networks with learning capabilities—and provides co-design and co-optimization methodologies for building hardware neural networks that can learn. Presenting a complete picture from high-level algorithm to low-level implementation details, Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design also covers many fundamentals and essentials in neural networks (e.g., deep learning), as well as hardware implementation of neural networks. The book begins with an overview of neural networks. It then discusses algorithms for utilizing and training rate-based artificial neural networks. Next comes an introduction to various options for executing neural networks, ranging from general-purpose processors to specialized hardware, from digital accelerator to analog accelerator. A design example on building energy-efficient accelerator for adaptive dynamic programming with neural networks is also presented. An examination of fundamental concepts and popular learning algorithms for spiking neural networks follows that, along with a look at the hardware for spiking neural networks. Then comes a chapter offering readers three design examples (two of which are based on conventional CMOS, and one on emerging nanotechnology) to implement the learning algorithm found in the previous chapter. The book concludes with an outlook on the future of neural network hardware. Includes cross-layer survey of hardware accelerators for neuromorphic algorithms Covers the co-design of architecture and algorithms with emerging devices for much-improved computing efficiency Focuses on the co-design of algorithms and hardware, which is especially critical for using emerging devices, such as traditional memristors or diffusive memristors, for neuromorphic computing Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design is an ideal resource for researchers, scientists, software engineers, and hardware engineers dealing with the ever-increasing requirement on power consumption and response time. It is also excellent for teaching and training undergraduate and graduate students about the latest generation neural networks with powerful learning capabilities.

Neuromorphic Computing

Neuromorphic Computing PDF

Author:

Publisher: BoD – Books on Demand

Published: 2023-11-15

Total Pages: 298

ISBN-13: 1803561432

DOWNLOAD EBOOK →

Dive into the cutting-edge world of Neuromorphic Computing, a groundbreaking volume that unravels the secrets of brain-inspired computational paradigms. Spanning neuroscience, artificial intelligence, and hardware design, this book presents a comprehensive exploration of neuromorphic systems, empowering both experts and newcomers to embrace the limitless potential of brain-inspired computing. Discover the fundamental principles that underpin neural computation as we journey through the origins of neuromorphic architectures, meticulously crafted to mimic the brain’s intricate neural networks. Unlock the true essence of learning mechanisms – unsupervised, supervised, and reinforcement learning – and witness how these innovations are shaping the future of artificial intelligence.

Energy-efficient Neocortex-inspired Systems with On-device Learning

Energy-efficient Neocortex-inspired Systems with On-device Learning PDF

Author: Abdullah M. Zyarah

Publisher:

Published: 2020

Total Pages: 172

ISBN-13:

DOWNLOAD EBOOK →

"Shifting the compute workloads from cloud toward edge devices can significantly improve the overall latency for inference and learning. On the contrary this paradigm shift exacerbates the resource constraints on the edge devices. Neuromorphic computing architectures, inspired by the neural processes, are natural substrates for edge devices. They offer co-located memory, in-situ training, energy efficiency, high memory density, and compute capacity in a small form factor. Owing to these features, in the recent past, there has been a rapid proliferation of hybrid CMOS/Memristor neuromorphic computing systems. However, most of these systems offer limited plasticity, target either spatial or temporal input streams, and are not demonstrated on large scale heterogeneous tasks. There is a critical knowledge gap in designing scalable neuromorphic systems that can support hybrid plasticity for spatio-temporal input streams on edge devices. This research proposes Pyragrid, a low latency and energy efficient neuromorphic computing system for processing spatio-temporal information natively on the edge. Pyragrid is a full-scale custom hybrid CMOS/Memristor architecture with analog computational modules and an underlying digital communication scheme. Pyragrid is designed for hierarchical temporal memory, a biomimetic sequence memory algorithm inspired by the neocortex. It features a novel synthetic synapses representation that enables dynamic synaptic pathways with reduced memory usage and interconnects. The dynamic growth in the synaptic pathways is emulated in the memristor device physical behavior, while the synaptic modulation is enabled through a custom training scheme optimized for area and power. Pyragrid features data reuse, in-memory computing, and event-driven sparse local computing to reduce data movement by ~44x and maximize system throughput and power efficiency by ~3x and ~161x over custom CMOS digital design. The innate sparsity in Pyragrid results in overall robustness to noise and device failure, particularly when processing visual input and predicting time series sequences. Porting the proposed system on edge devices can enhance their computational capability, response time, and battery life."--Abstract.