Computing with Cells and Atoms

Computing with Cells and Atoms PDF

Author: Cris Calude

Publisher: CRC Press

Published: 2000-10-26

Total Pages: 324

ISBN-13: 9780748408993

DOWNLOAD EBOOK →

At the turning of the millennium, a switch in computing technology is forecasted and looked for. Two main directions of research, both based on quite unconventional ideas are most promising - quantum computing and molecular computing. In the last few years, both of these methods have been intensely investigated. The present book is the first "friendly" presentation of basic ideas in these exciting areas. The style is rigorous, but without entering into excessive technicalities. Equal attention is paid to the main practical results reported so far and the main theoretical developments. The book is written for the educated layman and is self-contained, including all the necessary facts from mathematics, computer science, biology and quantum mechanics.

Computing with Cells

Computing with Cells PDF

Author: Pierluigi Frisco

Publisher: OUP Oxford

Published: 2009-05-21

Total Pages: 368

ISBN-13: 0191579637

DOWNLOAD EBOOK →

Membrane systems are a new class of distributed and parallel model of computation inspired by the subdivision of living cells into compartments delimited by membranes. Their hierarchical internal structure, their locality of interactions, their inherent parallelism and also their capacity to create new compartments, represent the distinguishing hallmarks of membrane systems. Membrane computing, the study of membrane systems, is a fascinating and fast growing area of research. The main streams of current investigations in Membrane Computing concern theoretical computer science and the modelling of complex systems. In this monograph Pierluigi Frisco considers the former trend: he presents an in-depth study of the formal language and computational complexity aspects of the most widely investigated models of membrane systems. This study gives a comprehensive understanding of the computational power of the models considered, shows different proof techniques used for such study, and introduces links highlighting the similarities and differences between the their computational power. These models cover a broad range of features, giving a grasp of the enormous flexibility of the framework offered by membrane systems. Aimed at graduates and researchers in the field, who can use it as a reference text, and to people with an initial interest in Membrane Computing, who can use it as a clear and up to date starting point for Membrane Computing.

Wetware

Wetware PDF

Author: Dennis Bray

Publisher: Yale University Press

Published: 2009-05-26

Total Pages: 280

ISBN-13: 0300155441

DOWNLOAD EBOOK →

“A beautifully written journey into the mechanics of the world of the cell, and even beyond, exploring the analogy with computers in a surprising way” (Denis Noble, author of Dance to the Tune of Life). How does a single-cell creature, such as an amoeba, lead such a sophisticated life? How does it hunt living prey, respond to lights, sounds, and smells, and display complex sequences of movements without the benefit of a nervous system? This book offers a startling and original answer. In clear, jargon-free language, Dennis Bray taps the findings from the discipline of systems biology to show that the internal chemistry of living cells is a form of computation. Cells are built out of molecular circuits that perform logical operations, as electronic devices do, but with unique properties. Bray argues that the computational juice of cells provides the basis for all distinctive properties of living systems: it allows organisms to embody in their internal structure an image of the world, and this accounts for their adaptability, responsiveness, and intelligence. In Wetware, Bray offers imaginative, wide-ranging, and perceptive critiques of robotics and complexity theory, as well as many entertaining and telling anecdotes. For the general reader, the practicing scientist, and all others with an interest in the nature of life, this book is an exciting portal to some of biology’s latest discoveries and ideas. “Drawing on the similarities between Pac-Man and an amoeba and efforts to model the human brain, this absorbing read shows that biologists and engineers have a lot to learn from working together.” —Discover magazine “Wetware will get the reader thinking.” —Science magazine

Computation in Cells and Tissues

Computation in Cells and Tissues PDF

Author: R. Paton

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 349

ISBN-13: 3662063697

DOWNLOAD EBOOK →

The field of biologically inspired computation has coexisted with mainstream computing since the 1930s, and the pioneers in this area include Warren McCulloch, Walter Pitts, Robert Rosen, Otto Schmitt, Alan Turing, John von Neumann and Norbert Wiener. Ideas arising out of studies of biology have permeated algorithmics, automata theory, artificial intelligence, graphics, information systems and software design. Within this context, the biomolecular, cellular and tissue levels of biological organisation have had a considerable inspirational impact on the development of computational ideas. Such innovations include neural computing, systolic arrays, genetic and immune algorithms, cellular automata, artificial tissues, DNA computing and protein memories. With the rapid growth in biological knowledge there remains a vast source of ideas yet to be tapped. This includes developments associated with biomolecular, genomic, enzymic, metabolic, signalling and developmental systems and the various impacts on distributed, adaptive, hybrid and emergent computation. This multidisciplinary book brings together a collection of chapters by biologists, computer scientists, engineers and mathematicians who were drawn together to examine the ways in which the interdisciplinary displacement of concepts and ideas could develop new insights into emerging computing paradigms. Funded by the UK Engineering and Physical Sciences Research Council (EPSRC), the CytoCom Network formally met on five occasions to examine and discuss common issues in biology and computing that could be exploited to develop emerging models of computation.

Cellular Computing

Cellular Computing PDF

Author: Martyn Amos

Publisher: Oxford University Press

Published: 2004-08-05

Total Pages: 240

ISBN-13: 019028868X

DOWNLOAD EBOOK →

The completion of the first draft of the human genome has led to an explosion of interest in genetics and molecular biology. The view of the genome as a network of interacting computational components is well-established, but researchers are now trying to reverse the analogy, by using living organisms to construct logic circuits. The potential applications for such technologies is huge, ranging from bio-sensors, through industrial applications to drug delivery and diagnostics. This book would be the first to deal with the implementation of this technology, describing several working experimental demonstrations using cells as components of logic circuits, building toward computers incorporating biological components in their functioning.

A Computer Scientist's Guide to Cell Biology

A Computer Scientist's Guide to Cell Biology PDF

Author: William W. Cohen

Publisher: Springer Science & Business Media

Published: 2007-07-23

Total Pages: 104

ISBN-13: 0387482784

DOWNLOAD EBOOK →

This book is designed specifically as a guide for Computer Scientists needing an introduction to Cell Biology. The text explores three different facets of biology: biological systems, experimental methods, and language and nomenclature. The author discusses what biologists are trying to determine from their experiments, how various experimental procedures are used and how they relate to accepted concepts in computer science, and the vocabulary necessary to read and understand current literature in biology. The book is an invaluable reference tool and an excellent starting point for a more comprehensive examination of cell biology.

Ultimate Computing

Ultimate Computing PDF

Author: S.R. Hameroff

Publisher: Elsevier

Published: 2014-04-11

Total Pages: 380

ISBN-13: 0444600094

DOWNLOAD EBOOK →

The possibility of direct interfacing between biological and technological information devices could result in a merger of mind and machine - Ultimate Computing. This book, a thorough consideration of this idea, involves a number of disciplines, including biochemistry, cognitive science, computer science, engineering, mathematics, microbiology, molecular biology, pharmacology, philosophy, physics, physiology, and psychology.

DNA Computing Models

DNA Computing Models PDF

Author: Zoya Ignatova

Publisher: Springer Science & Business Media

Published: 2008-06-11

Total Pages: 288

ISBN-13: 0387736379

DOWNLOAD EBOOK →

Sir Francis Crick would undoubtedly be at the front of the line ordering this fascinating book. Being one of the discoverers of DNA, he would be amazed at how his work has been applied to mankind's most important invention, the computer. In this excellent text, the reader is given a comprehensive introduction to the field of DNA computing. The book emphasizes computational methods to tackle central problems of DNA computing, such as controlling living cells, building patterns, and generating nanomachines. It also includes laboratory-scale human-operated models of computation, as well as a description of the first experiment of DNA computation conducted by Adleman in 1994.

Computation in Living Cells

Computation in Living Cells PDF

Author: Andrzej Ehrenfeucht

Publisher: Springer

Published: 2014-01-15

Total Pages: 220

ISBN-13: 9783662063729

DOWNLOAD EBOOK →

Natural Computing is concerned with computation that is taking place in Nature. The investigation of computations in living cells is one of the central and fastest growing areas of research in this field. Gene assembly in ciliates (unicellular organisms) is a splendid example of such computations, and it is fascinating from both the biological and the computational viewpoints. As a matter of fact, both biology and the science of computation have benefited from the interdisciplinary research on the computational nature of gene assembly this work has helped to clarify important biological aspects of gene assembly, yielded novel insights into the nature of computation, and broadened our understanding of what computation is about. This monograph gives an accessible account of both the biology and the formal analysis of the gene assembly process. It can be used as a textbook for either graduate courses or seminars.