Space Plasma Simulation

Space Plasma Simulation PDF

Author: Jörg Büchner

Publisher: Springer

Published: 2008-01-11

Total Pages: 363

ISBN-13: 3540365303

DOWNLOAD EBOOK →

The aim of this book is twofold: to provide an introduction for newcomers to state of the art computer simulation techniques in space plasma physics and an overview of current developments. Computer simulation has reached a stage where it can be a highly useful tool for guiding theory and for making predictions of space plasma phenomena, ranging from microscopic to global scales. The various articles are arranged, as much as possible, according to the - derlying simulation technique, starting with the technique that makes the least number of assumptions: a fully kinetic approach which solves the coupled set of Maxwell’s equations for the electromagnetic ?eld and the equations of motion for a very large number of charged particles (electrons and ions) in this ?eld. Clearly, this is also the computationally most demanding model. Therefore, even with present day high performance computers, it is the most restrictive in terms of the space and time domain and the range of particle parameters that can be covered by the simulation experiments. It still makes sense, therefore, to also use models, which due to their simp- fying assumptions, seem less realistic, although the e?ect of these assumptions on the outcome of the simulation experiments needs to be carefully assessed.

Space Plasma Simulation

Space Plasma Simulation PDF

Author: Jörg Büchner

Publisher: Springer

Published: 2003-04-09

Total Pages: 354

ISBN-13: 9783540006985

DOWNLOAD EBOOK →

The aim of this book is twofold: to provide an introduction for newcomers to state of the art computer simulation techniques in space plasma physics and an overview of current developments. Computer simulation has reached a stage where it can be a highly useful tool for guiding theory and for making predictions of space plasma phenomena, ranging from microscopic to global scales. The various articles are arranged, as much as possible, according to the - derlying simulation technique, starting with the technique that makes the least number of assumptions: a fully kinetic approach which solves the coupled set of Maxwell’s equations for the electromagnetic ?eld and the equations of motion for a very large number of charged particles (electrons and ions) in this ?eld. Clearly, this is also the computationally most demanding model. Therefore, even with present day high performance computers, it is the most restrictive in terms of the space and time domain and the range of particle parameters that can be covered by the simulation experiments. It still makes sense, therefore, to also use models, which due to their simp- fying assumptions, seem less realistic, although the e?ect of these assumptions on the outcome of the simulation experiments needs to be carefully assessed.

Computer Simulation of Space Plasmas

Computer Simulation of Space Plasmas PDF

Author: T. Sato

Publisher: Springer

Published: 1985-05-31

Total Pages: 406

ISBN-13:

DOWNLOAD EBOOK →

Computer simulation is now widely recognized as a powerful tool and useful method at the current stage of research in space plasma physics. The expected role of computer simulation is to bridge the existing gap between theories and experiments/observations and to give a profound physical insight into highly tangled and nonlinearly coupled space plasma phenomena. One of the goals of space plasma physics in 1980's and 1990's is to elucidate the quantitative causal relationships of global and local energy flows in space plasma environment and establish the space plasma physics via cooperative studies among three important elements of observations, theories and computer simulations. Based on such recognition, Dr. M. Ashour-Abdalla (UCLA/USA), Dr. R. Gendrin (CNET/FRANCE) and both of us met together at the 20th General Assembly of URSI at Washington D. C. in 1981 to discuss what we should do and what we could do, reaching a conclusion that it is time to establish an International School of Space Simulations (ISSS). The objectives of the ISSS thus organized are firstly to educate and stimulate graduate students and young sCientists, secondly to exchange information on updated simulation techniques and thirdly to have mutual discussions among observational, theoretical and simulational scientists in the field of space physics. The first ISSS were organized by Prof. P. Coleman, Prof. T. Obayashi, Dr. H. Okuda in addition to the above four members. The first ISSS was held at Kansai Seminar House in Kyoto from Nov. I to Nov. 12, 1982.

Space Plasma Simulations

Space Plasma Simulations PDF

Author: M. Ashour-Abdalla

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 575

ISBN-13: 9400954549

DOWNLOAD EBOOK →

The emergence over the past several years of space plasma simula tions as a distinct field of endeavor, rather than simply the somewhat startling offspring of plasma physics, computer simulations and space observations, has necessitated a concentrated effort at interdigitat ing its parent and component fields. After several years of working the benefits of a well-defined interactive community of those without working in the field, a group of those who had gained greatly from setting up joint research projects and other lines of communication, arranged to further these gains by setting up the First International School for Space Simulations, which was organized by Kyoto University and held in Kyoto, Japan in November 1982. Its unqualified success led to the organization of the second such School, this time by the University of California, Los Angeles, and held in Kapaa, Kauai, Hawaii. The Second International School for Space Simulations drew some 175 attendees from around the world; the distribution of attendees approached the targeted equal representation by established investi gators and graduate students/beginning investigators. This strong attendance by graduate students and beginning investigators was due to the generous support of a number of funding agencies from the United States and Japan as well as international scientific organizations.

Plasma Physics via Computer Simulation

Plasma Physics via Computer Simulation PDF

Author: C.K. Birdsall

Publisher: CRC Press

Published: 2018-10-08

Total Pages: 504

ISBN-13: 1482263068

DOWNLOAD EBOOK →

Divided into three main parts, the book guides the reader to an understanding of the basic concepts in this fascinating field of research. Part 1 introduces you to the fundamental concepts of simulation. It examines one-dimensional electrostatic codes and electromagnetic codes, and describes the numerical methods and analysis. Part 2 explores the mathematics and physics behind the algorithms used in Part 1. In Part 3, the authors address some of the more complicated simulations in two and three dimensions. The book introduces projects to encourage practical work Readers can download plasma modeling and simulation software — the ES1 program — with implementations for PCs and Unix systems along with the original FORTRAN source code. Now available in paperback, Plasma Physics via Computer Simulation is an ideal complement to plasma physics courses and for self-study.

Space and Astrophysical Plasma Simulation

Space and Astrophysical Plasma Simulation PDF

Author: Jörg Büchner

Publisher: Springer Nature

Published: 2023-03-01

Total Pages: 427

ISBN-13: 3031118707

DOWNLOAD EBOOK →

This book is a collection of contributions covering the major subjects in numerical simulation of space and astrophysical plasma. It introduces the different approaches and methods to model plasma, the necessary computational codes, and applications in the field. The book is rooted in the previous work Space Plasma Simulation (Springer, 2003) and includes the latest developments. It is divided into three parts and all chapters start with an introduction motivating the topic and its use in research and ends with a discussion of its applications. The chapters of the first part contain tutorials of the different basic approaches needed to perform space plasma simulations. This part is particularly useful for graduate students to master the subject. The second part presents more advanced materials for students and researchers who already work with pre-existing codes but want to implement the recent progresses made in the field. The last part of the book discusses developments in the area for researchers who are actively working on advanced simulation approaches like higher order schemes and artificial intelligence, agent-based technologies for multiscale and multi-dimensional systems, which represent the recent innovative contributions made in space plasma research.