Computer Methods in Mechanics

Computer Methods in Mechanics PDF

Author: Mieczyslaw Kuczma

Publisher: Springer Science & Business Media

Published: 2010-03-10

Total Pages: 534

ISBN-13: 364205241X

DOWNLOAD EBOOK →

Prominent scientists present the latest achievements in computational methods and mechanics in this book. These lectures were held at the CMM 2009 conference.

Computer Methods in Mechanics

Computer Methods in Mechanics PDF

Author: Mieczyslaw Kuczma

Publisher:

Published: 2010

Total Pages:

ISBN-13: 9783642052743

DOWNLOAD EBOOK →

Prominent scientists present the latest achievements in computational methods and mechanics in this book. These lectures were held at the CMM 2009 conference.

Computer Methods for Engineering

Computer Methods for Engineering PDF

Author: Yogesh Jaluria

Publisher: Allyn & Bacon

Published: 1988

Total Pages: 552

ISBN-13:

DOWNLOAD EBOOK →

This text is aimed at helping engineering students develop expertise in numerical methods and use them to solve problems of practical interest. It provides students with a treatment of numerical methods for important operations such as integration, differentiation and root solving.

Computational Methods in Engineering

Computational Methods in Engineering PDF

Author: S. P. Venkateshan

Publisher: Springer Nature

Published: 2023-05-31

Total Pages: 824

ISBN-13: 3031082265

DOWNLOAD EBOOK →

The book is designed to serve as a textbook for courses offered to graduate and upper-undergraduate students enrolled in mechanical engineering. The book attempts to make students with mathematical backgrounds comfortable with numerical methods. The book also serves as a handy reference for practicing engineers who are interested in applications. The book is written in an easy-to-understand manner, with the essence of each numerical method clearly stated. This makes it easy for professional engineers, students, and early career researchers to follow the material presented in the book. The structure of the book has been modeled accordingly. It is divided into four modules: i) solution of a system of equations and eigenvalues which includes linear equations, determining eigenvalues, and solution of nonlinear equations; ii) function approximations: interpolation, data fit, numerical differentiation, and numerical integration; iii) solution of ordinary differential equations—initial value problems and boundary value problems; and iv) solution of partial differential equations—parabolic, elliptic, and hyperbolic PDEs. Each section of the book includes exercises to reinforce the concepts, and problems have been added at the end of each chapter. Exercise problems may be solved by using computational tools such as scientific calculators, spreadsheet programs, and MATLAB codes. The detailed coverage and pedagogical tools make this an ideal textbook for students, early career researchers, and professionals.

Computer Methods in Chemical Engineering

Computer Methods in Chemical Engineering PDF

Author: Nayef Ghasem

Publisher: CRC Press

Published: 2021-11-23

Total Pages: 490

ISBN-13: 1000473961

DOWNLOAD EBOOK →

While various software packages have become essential for performing unit operations and other kinds of processes in chemical engineering, the fundamental theory and methods of calculation must also be understood to effectively test the validity of these packages and verify the results. Computer Methods in Chemical Engineering, Second Edition presents the most used simulation software along with the theory involved. It covers chemical engineering thermodynamics, fluid mechanics, material and energy balances, mass transfer operations, reactor design, and computer applications in chemical engineering. The highly anticipated Second Edition is thoroughly updated to reflect the latest updates in the featured software and has added a focus on real reactors, introduces AVEVA Process Simulation software, and includes new and updated appendixes. Through this book, students will learn the following: What chemical engineers do The functions and theoretical background of basic chemical engineering unit operations How to simulate chemical processes using software packages How to size chemical process units manually and with software How to fit experimental data How to solve linear and nonlinear algebraic equations as well as ordinary differential equations Along with exercises and references, each chapter contains a theoretical description of process units followed by numerous examples that are solved step by step via hand calculation and computer simulation using Hysys/UniSim, PRO/II, Aspen Plus, and SuperPro Designer. Adhering to the Accreditation Board for Engineering and Technology (ABET) criteria, the book gives chemical engineering students and professionals the tools to solve real problems involving thermodynamics and fluid-phase equilibria, fluid flow, material and energy balances, heat exchangers, reactor design, distillation, absorption, and liquid extraction. This new edition includes many examples simulated by recent software packages. In addition, fluid package information is introduced in correlation to the numerical problems in book. An updated solutions manual and PowerPoint slides are also provided in addition to new video guides and UniSim program files.

Computational Contact Mechanics

Computational Contact Mechanics PDF

Author: Peter Wriggers

Publisher: Springer Science & Business Media

Published: 2008-04-01

Total Pages: 252

ISBN-13: 3211772987

DOWNLOAD EBOOK →

Topics of this book span the range from spatial and temporal discretization techniques for contact and impact problems with small and finite deformations over investigations on the reliability of micromechanical contact models over emerging techniques for rolling contact mechanics to homogenization methods and multi-scale approaches in contact problems.

Numerical and Computer Methods in Structural Mechanics

Numerical and Computer Methods in Structural Mechanics PDF

Author: Steven J. Fenves

Publisher: Elsevier

Published: 2014-05-10

Total Pages: 698

ISBN-13: 1483272540

DOWNLOAD EBOOK →

Numerical and Computer Methods in Structural Mechanics is a compendium of papers that deals with the numerical methods in structural mechanics, computer techniques, and computer capabilities. Some papers discus the analytical basis of the computer technique most widely used in software, that is, the finite element method. This method includes the convergence (in terms of variation principles) isoparametrics, hybrid models, and incompatible displacement models. Other papers explain the storage or retrieval of data, as well as equation-solving algorithms. Other papers describe general-purpose structural mechanics programs, alternatives to, and extension of the usual finite element approaches. Another paper explores nonlinear, dynamic finite element problems, and a direct physical approach to determine finite difference models. Special papers explain structural mechanics used in computing, particularly, those related to integrated data bases, such as in the Structures Oriented Exchange System of the Office of Naval Research and the integrated design of tanker structures. Other papers describe software and hardware capabilities, for example, in ship design, fracture mechanics, biomechanics, and crash safety. The text is suitable for programmers, computer engineers, researchers, and scientists involved in materials and industrial design.

Mechanics of Solids and Structures, Second Edition

Mechanics of Solids and Structures, Second Edition PDF

Author: Roger T. Fenner

Publisher: CRC Press

Published: 2012-06-12

Total Pages: 707

ISBN-13: 1439858144

DOWNLOAD EBOOK →

A popular text in its first edition, Mechanics of Solids and Structures serves as a course text for the senior/graduate (fourth or fifth year) courses/modules in the mechanics of solid/advanced strength of materials, offered in aerospace, civil, engineering science, and mechanical engineering departments. Now, Mechanics of Solid and Structure, Second Edition presents the latest developments in computational methods that have revolutionized the field, while retaining all of the basic principles and foundational information needed for mastering advanced engineering mechanics. Key changes to the second edition include full-color illustrations throughout, web-based computational material, and the addition of a new chapter on the energy methods of structural mechanics. Using authoritative, yet accessible language, the authors explain the construction of expressions for both total potential energy and complementary potential energy associated with structures. They explore how the principles of minimal total potential energy and complementary energy provide the means to obtain governing equations of the structure, as well as a means to determine point forces and displacements with ease using Castigliano’s Theorems I and II. The material presented in this chapter also provides a deeper understanding of the finite element method, the most popular method for solving structural mechanics problems. Integrating computer techniques and programs into the body of the text, all chapters offer exercise problems for further understanding. Several appendices provide examples, answers to select problems, and opportunities for investigation into complementary topics. Listings of computer programs discussed are available on the CRC Press website.

Computational Methods in Nonlinear Structural and Solid Mechanics

Computational Methods in Nonlinear Structural and Solid Mechanics PDF

Author: Ahmed K. Noor

Publisher: Elsevier

Published: 2014-05-20

Total Pages: 472

ISBN-13: 1483145646

DOWNLOAD EBOOK →

Computational Methods in Nonlinear Structural and Solid Mechanics covers the proceedings of the Symposium on Computational Methods in Nonlinear Structural and Solid Mechanics. The book covers the development of efficient discretization approaches; advanced numerical methods; improved programming techniques; and applications of these developments to nonlinear analysis of structures and solids. The chapters of the text are organized into 10 parts according to the issue they tackle. The first part deals with nonlinear mathematical theories and formulation aspects, while the second part covers computational strategies for nonlinear programs. Part 3 deals with time integration and numerical solution of nonlinear algebraic equations, while Part 4 discusses material characterization and nonlinear fracture mechanics, and Part 5 tackles nonlinear interaction problems. The sixth part discusses seismic response and nonlinear analysis of concrete structure, and the seventh part tackles nonlinear problems for nuclear reactors. Part 8 covers crash dynamics and impact problems, while Part 9 deals with nonlinear problems of fibrous composites and advanced nonlinear applications. The last part discusses computerized symbolic manipulation and nonlinear analysis software systems. The book will be of great interest to numerical analysts, computer scientists, structural engineers, and other professionals concerned with nonlinear structural and solid mechanics.