Computer Architecture Techniques for Power-Efficiency

Computer Architecture Techniques for Power-Efficiency PDF

Author: Stefanos Kaxiras

Publisher: Springer Nature

Published: 2022-06-01

Total Pages: 207

ISBN-13: 3031017218

DOWNLOAD EBOOK →

In the last few years, power dissipation has become an important design constraint, on par with performance, in the design of new computer systems. Whereas in the past, the primary job of the computer architect was to translate improvements in operating frequency and transistor count into performance, now power efficiency must be taken into account at every step of the design process. While for some time, architects have been successful in delivering 40% to 50% annual improvement in processor performance, costs that were previously brushed aside eventually caught up. The most critical of these costs is the inexorable increase in power dissipation and power density in processors. Power dissipation issues have catalyzed new topic areas in computer architecture, resulting in a substantial body of work on more power-efficient architectures. Power dissipation coupled with diminishing performance gains, was also the main cause for the switch from single-core to multi-core architectures and a slowdown in frequency increase. This book aims to document some of the most important architectural techniques that were invented, proposed, and applied to reduce both dynamic power and static power dissipation in processors and memory hierarchies. A significant number of techniques have been proposed for a wide range of situations and this book synthesizes those techniques by focusing on their common characteristics. Table of Contents: Introduction / Modeling, Simulation, and Measurement / Using Voltage and Frequency Adjustments to Manage Dynamic Power / Optimizing Capacitance and Switching Activity to Reduce Dynamic Power / Managing Static (Leakage) Power / Conclusions

Computer Architecture Techniques for Power-efficiency

Computer Architecture Techniques for Power-efficiency PDF

Author: Stefanos Kaxiras

Publisher: Morgan & Claypool Publishers

Published: 2008

Total Pages: 220

ISBN-13: 1598292080

DOWNLOAD EBOOK →

In the last few years, power dissipation has become an important design constraint, on par with performance, in the design of new computer systems. Whereas in the past, the primary job of the computer architect was to translate improvements in operating frequency and transistor count into performance, now power efficiency must be taken into account at every step of the design process. While for some time, architects have been successful in delivering 40% to 50% annual improvement in processor performance, costs that were previously brushed aside eventually caught up. The most critical of these costs is the inexorable increase in power dissipation and power density in processors. Power dissipation issues have catalyzed new topic areas in computer architecture, resulting in a substantial body of work on more power-efficient architectures. Power dissipation coupled with diminishing performance gains, was also the main cause for the switch from single-core to multi-core architectures and a slowdown in frequency increase. This book aims to document some of the most important architectural techniques that were invented, proposed, and applied to reduce both dynamic power and static power dissipation in processors and memory hierarchies. A significant number of techniques have been proposed for a wide range of situations and this book synthesizes those techniques by focusing on their common characteristics.

Power-Efficient Computer Architectures

Power-Efficient Computer Architectures PDF

Author: Magnus Själander

Publisher: Springer Nature

Published: 2022-05-31

Total Pages: 88

ISBN-13: 3031017455

DOWNLOAD EBOOK →

As Moore's Law and Dennard scaling trends have slowed, the challenges of building high-performance computer architectures while maintaining acceptable power efficiency levels have heightened. Over the past ten years, architecture techniques for power efficiency have shifted from primarily focusing on module-level efficiencies, toward more holistic design styles based on parallelism and heterogeneity. This work highlights and synthesizes recent techniques and trends in power-efficient computer architecture. Table of Contents: Introduction / Voltage and Frequency Management / Heterogeneity and Specialization / Communication and Memory Systems / Conclusions / Bibliography / Authors' Biographies

Energy Efficient High Performance Processors

Energy Efficient High Performance Processors PDF

Author: Jawad Haj-Yahya

Publisher: Springer

Published: 2018-03-22

Total Pages: 165

ISBN-13: 9811085544

DOWNLOAD EBOOK →

This book explores energy efficiency techniques for high-performance computing (HPC) systems using power-management methods. Adopting a step-by-step approach, it describes power-management flows, algorithms and mechanism that are employed in modern processors such as Intel Sandy Bridge, Haswell, Skylake and other architectures (e.g. ARM). Further, it includes practical examples and recent studies demonstrating how modem processors dynamically manage wide power ranges, from a few milliwatts in the lowest idle power state, to tens of watts in turbo state. Moreover, the book explains how thermal and power deliveries are managed in the context this huge power range. The book also discusses the different metrics for energy efficiency, presents several methods and applications of the power and energy estimation, and shows how by using innovative power estimation methods and new algorithms modern processors are able to optimize metrics such as power, energy, and performance. Different power estimation tools are presented, including tools that break down the power consumption of modern processors at sub-processor core/thread granularity. The book also investigates software, firmware and hardware coordination methods of reducing power consumption, for example a compiler-assisted power management method to overcome power excursions. Lastly, it examines firmware algorithms for dynamic cache resizing and dynamic voltage and frequency scaling (DVFS) for memory sub-systems.

Power-efficient System Design

Power-efficient System Design PDF

Author: Preeti Ranjan Panda

Publisher: Springer Science & Business Media

Published: 2010-07-23

Total Pages: 260

ISBN-13: 144196388X

DOWNLOAD EBOOK →

The Information and communication technology (ICT) industry is said to account for 2% of the worldwide carbon emissions – a fraction that continues to grow with the relentless push for more and more sophisticated computing equipment, c- munications infrastructure, and mobile devices. While computers evolved in the directionofhigherandhigherperformanceformostofthelatterhalfofthe20thc- tury, the late 1990’s and early 2000’ssaw a new emergingfundamentalconcern that has begun to shape our day-to-day thinking in system design – power dissipation. As we elaborate in Chapter 1, a variety of factors colluded to raise power-ef?ciency as a ?rst class design concern in the designer’s mind, with profound consequences all over the ?eld: semiconductor process design, circuit design, design automation tools, system and application software, all the way to large data centers. Power-ef?cient System Design originated from a desire to capture and highlight the exciting developments in the rapidly evolving ?eld of power and energy op- mization in electronic and computer based systems. Tremendous progress has been made in the last two decades, and the topic continues to be a fascinating research area. To develop a clearer focus, we have concentrated on the relatively higher level of design abstraction that is loosely called the system level. In addition to the ext- sive coverage of traditional power reduction targets such as CPU and memory, the book is distinguished by detailed coverage of relatively modern power optimization ideas focussing on components such as compilers, operating systems, servers, data centers, and graphics processors.

Computer Organization and Design RISC-V Edition

Computer Organization and Design RISC-V Edition PDF

Author: David A. Patterson

Publisher: Morgan Kaufmann

Published: 2017-05-12

Total Pages: 696

ISBN-13: 0128122765

DOWNLOAD EBOOK →

The new RISC-V Edition of Computer Organization and Design features the RISC-V open source instruction set architecture, the first open source architecture designed to be used in modern computing environments such as cloud computing, mobile devices, and other embedded systems. With the post-PC era now upon us, Computer Organization and Design moves forward to explore this generational change with examples, exercises, and material highlighting the emergence of mobile computing and the Cloud. Updated content featuring tablet computers, Cloud infrastructure, and the x86 (cloud computing) and ARM (mobile computing devices) architectures is included. An online companion Web site provides advanced content for further study, appendices, glossary, references, and recommended reading. Features RISC-V, the first such architecture designed to be used in modern computing environments, such as cloud computing, mobile devices, and other embedded systems Includes relevant examples, exercises, and material highlighting the emergence of mobile computing and the cloud

Computer Architecture

Computer Architecture PDF

Author: John L. Hennessy

Publisher: Elsevier

Published: 2012

Total Pages: 858

ISBN-13: 012383872X

DOWNLOAD EBOOK →

The computing world is in the middle of a revolution: mobile clients and cloud computing have emerged as the dominant paradigms driving programming and hardware innovation. This book focuses on the shift, exploring the ways in which software and technology in the 'cloud' are accessed by cell phones, tablets, laptops, and more

Computer Architecture Performance Evaluation Methods

Computer Architecture Performance Evaluation Methods PDF

Author: Lieven Eeckhout

Publisher: Springer Nature

Published: 2022-05-31

Total Pages: 132

ISBN-13: 3031017277

DOWNLOAD EBOOK →

Performance evaluation is at the foundation of computer architecture research and development. Contemporary microprocessors are so complex that architects cannot design systems based on intuition and simple models only. Adequate performance evaluation methods are absolutely crucial to steer the research and development process in the right direction. However, rigorous performance evaluation is non-trivial as there are multiple aspects to performance evaluation, such as picking workloads, selecting an appropriate modeling or simulation approach, running the model and interpreting the results using meaningful metrics. Each of these aspects is equally important and a performance evaluation method that lacks rigor in any of these crucial aspects may lead to inaccurate performance data and may drive research and development in a wrong direction. The goal of this book is to present an overview of the current state-of-the-art in computer architecture performance evaluation, with a special emphasis on methods for exploring processor architectures. The book focuses on fundamental concepts and ideas for obtaining accurate performance data. The book covers various topics in performance evaluation, ranging from performance metrics, to workload selection, to various modeling approaches including mechanistic and empirical modeling. And because simulation is by far the most prevalent modeling technique, more than half the book's content is devoted to simulation. The book provides an overview of the simulation techniques in the computer designer's toolbox, followed by various simulation acceleration techniques including sampled simulation, statistical simulation, parallel simulation and hardware-accelerated simulation. Table of Contents: Introduction / Performance Metrics / Workload Design / Analytical Performance Modeling / Simulation / Sampled Simulation / Statistical Simulation / Parallel Simulation and Hardware Acceleration / Concluding Remarks

Design Technologies for Green and Sustainable Computing Systems

Design Technologies for Green and Sustainable Computing Systems PDF

Author: Partha Pratim Pande

Publisher: Springer Science & Business Media

Published: 2013-07-17

Total Pages: 244

ISBN-13: 1461449758

DOWNLOAD EBOOK →

This book provides a comprehensive guide to the design of sustainable and green computing systems (GSC). Coverage includes important breakthroughs in various aspects of GSC, including multi-core architectures, interconnection technology, data centers, high performance computing (HPC), and sensor networks. The authors address the challenges of power efficiency and sustainability in various contexts, including system design, computer architecture, programming languages, compilers and networking.

Processor Microarchitecture

Processor Microarchitecture PDF

Author: Antonio Gonzalez

Publisher: Morgan & Claypool Publishers

Published: 2010-03-03

Total Pages: 116

ISBN-13: 1608454533

DOWNLOAD EBOOK →

This lecture presents a study of the microarchitecture of contemporary microprocessors. The focus is on implementation aspects, with discussions on their implications in terms of performance, power, and cost of state-of-the-art designs. The lecture starts with an overview of the different types of microprocessors and a review of the microarchitecture of cache memories. Then, it describes the implementation of the fetch unit, where special emphasis is made on the required support for branch prediction. The next section is devoted to instruction decode with special focus on the particular support to decoding x86 instructions. The next chapter presents the allocation stage and pays special attention to the implementation of register renaming. Afterward, the issue stage is studied. Here, the logic to implement out-of-order issue for both memory and non-memory instructions is thoroughly described. The following chapter focuses on the instruction execution and describes the different functional units that can be found in contemporary microprocessors, as well as the implementation of the bypass network, which has an important impact on the performance. Finally, the lecture concludes with the commit stage, where it describes how the architectural state is updated and recovered in case of exceptions or misspeculations. This lecture is intended for an advanced course on computer architecture, suitable for graduate students or senior undergrads who want to specialize in the area of computer architecture. It is also intended for practitioners in the industry in the area of microprocessor design. The book assumes that the reader is familiar with the main concepts regarding pipelining, out-of-order execution, cache memories, and virtual memory. Table of Contents: Introduction / Caches / The Instruction Fetch Unit / Decode / Allocation / The Issue Stage / Execute / The Commit Stage / References / Author Biographies