Computational Modeling in Tissue Engineering

Computational Modeling in Tissue Engineering PDF

Author: Liesbet Geris

Publisher: Springer Science & Business Media

Published: 2012-10-30

Total Pages: 438

ISBN-13: 3642325637

DOWNLOAD EBOOK →

One of the major challenges in tissue engineering is the translation of biological knowledge on complex cell and tissue behavior into a predictive and robust engineering process. Mastering this complexity is an essential step towards clinical applications of tissue engineering. This volume discusses computational modeling tools that allow studying the biological complexity in a more quantitative way. More specifically, computational tools can help in: (i) quantifying and optimizing the tissue engineering product, e.g. by adapting scaffold design to optimize micro-environmental signals or by adapting selection criteria to improve homogeneity of the selected cell population; (ii) quantifying and optimizing the tissue engineering process, e.g. by adapting bioreactor design to improve quality and quantity of the final product; and (iii) assessing the influence of the in vivo environment on the behavior of the tissue engineering product, e.g. by investigating vascular ingrowth. The book presents examples of each of the above mentioned areas of computational modeling. The underlying tissue engineering applications will vary from blood vessels over trachea to cartilage and bone. For the chapters describing examples of the first two areas, the main focus is on (the optimization of) mechanical signals, mass transport and fluid flow encountered by the cells in scaffolds and bioreactors as well as on the optimization of the cell population itself. In the chapters describing modeling contributions in the third area, the focus will shift towards the biology, the complex interactions between biology and the micro-environmental signals and the ways in which modeling might be able to assist in investigating and mastering this complexity. The chapters cover issues related to (multiscale/multiphysics) model building, training and validation, but also discuss recent advances in scientific computing techniques that are needed to implement these models as well as new tools that can be used to experimentally validate the computational results.

Computational Models in Engineering

Computational Models in Engineering PDF

Author: Konstantin Volkov

Publisher: BoD – Books on Demand

Published: 2020-03-11

Total Pages: 148

ISBN-13: 1789238692

DOWNLOAD EBOOK →

The accurate prediction of multi-physical and multi-scale physical/chemical/mechanical processes in engineering remains a challenging problem despite considerable work in this area and the acceptance of finite element analysis and computational fluid dynamics as design tools. This book intends to provide the reader with an overview of the latest developments in computational techniques used in various engineering disciplines. The book includes leading-edge scientific contributions of computational and applied mathematics, computer science and engineering focusing on the modelling and simulation of complex engineering systems and multi-physical/multi-scale engineering problems. The following topics are covered: numerical analysis and algorithms, software development, coupled analysis, multi-criteria optimization as they applied to all kinds of applied and emerging problems in energy systems, additive manufacturing, propulsion systems, and thermal engineering.

Computational Modeling in Biomedical Engineering and Medical Physics

Computational Modeling in Biomedical Engineering and Medical Physics PDF

Author: Alexandru Morega

Publisher: Academic Press

Published: 2020-10-02

Total Pages: 320

ISBN-13: 0128178973

DOWNLOAD EBOOK →

Mathematical and numerical modelling of engineering problems in medicine is aimed at unveiling and understanding multidisciplinary interactions and processes and providing insights useful to clinical care and technology advances for better medical equipment and systems. When modelling medical problems, the engineer is confronted with multidisciplinary problems of electromagnetism, heat and mass transfer, and structural mechanics with, possibly, different time and space scales, which may raise concerns in formulating consistent, solvable mathematical models. Computational Medical Engineering presents a number of engineering for medicine problems that may be encountered in medical physics, procedures, diagnosis and monitoring techniques, including electrical activity of the heart, hemodynamic activity monitoring, magnetic drug targeting, bioheat models and thermography, RF and microwave hyperthermia, ablation, EMF dosimetry, and bioimpedance methods. The authors discuss the core approach methodology to pose and solve different problems of medical engineering, including essentials of mathematical modelling (e.g., criteria for well-posed problems); physics scaling (homogenization techniques); Constructal Law criteria in morphing shape and structure of systems with internal flows; computational domain construction (CAD and, or reconstruction techniques based on medical images); numerical modelling issues, and validation techniques used to ascertain numerical simulation results. In addition, new ideas and venues to investigate and understand finer scale models and merge them into continuous media medical physics are provided as case studies. Presents the fundamentals of mathematical and numerical modeling of engineering problems in medicine Discusses many of the most common modelling scenarios for Biomedical Engineering, including, electrical activity of the heart hemodynamic activity monitoring, magnetic drug targeting, bioheat models and thermography, RF and microwave hyperthermia, ablation, EMF dosimetry, and bioimpedance methods Includes discussion of the core approach methodology to pose and solve different problems of medical engineering, including essentials of mathematical modelling, physics scaling, Constructal Law criteria in morphing shape and structure of systems with internal flows, computational domain construction, numerical modelling issues, and validation techniques used to ascertain numerical simulation results

Introduction to Elementary Computational Modeling

Introduction to Elementary Computational Modeling PDF

Author: Jose Garrido

Publisher: CRC Press

Published: 2011-10-26

Total Pages: 331

ISBN-13: 1439867399

DOWNLOAD EBOOK →

With an emphasis on problem solving, this book introduces the basic principles and fundamental concepts of computational modeling. It emphasizes reasoning and conceptualizing problems, the elementary mathematical modeling, and the implementation using computing concepts and principles. Examples are included that demonstrate the computation and visualization of the implemented models. The author provides case studies, along with an overview of computational models and their development. The first part of the text presents the basic concepts of models and techniques for designing and implementing problem solutions. It applies standard pseudo-code constructs and flowcharts for designing models. The second part covers model implementation with basic programming constructs using MATLAB®, Octave, and FreeMat. Aimed at beginning students in computer science, mathematics, statistics, and engineering, Introduction to Elementary Computational Modeling: Essential Concepts, Principles, and Problem Solving focuses on fundamentals, helping the next generation of scientists and engineers hone their problem solving skills.

Computational Models for Polydisperse Particulate and Multiphase Systems

Computational Models for Polydisperse Particulate and Multiphase Systems PDF

Author: Daniele L. Marchisio

Publisher: Cambridge University Press

Published: 2013-03-28

Total Pages: 547

ISBN-13: 1107328179

DOWNLOAD EBOOK →

Providing a clear description of the theory of polydisperse multiphase flows, with emphasis on the mesoscale modelling approach and its relationship with microscale and macroscale models, this all-inclusive introduction is ideal whether you are working in industry or academia. Theory is linked to practice through discussions of key real-world cases (particle/droplet/bubble coalescence, break-up, nucleation, advection and diffusion and physical- and phase-space), providing valuable experience in simulating systems that can be applied to your own applications. Practical cases of QMOM, DQMOM, CQMOM, EQMOM and ECQMOM are also discussed and compared, as are realizable finite-volume methods. This provides the tools you need to use quadrature-based moment methods, choose from the many available options, and design high-order numerical methods that guarantee realizable moment sets. In addition to the numerous practical examples, MATLAB® scripts for several algorithms are also provided, so you can apply the methods described to practical problems straight away.

Computational Models of Argument

Computational Models of Argument PDF

Author: H. Prakken

Publisher: IOS Press

Published: 2020-09-25

Total Pages: 498

ISBN-13: 1643681079

DOWNLOAD EBOOK →

The investigation of computational models of argument is a rich and fascinating interdisciplinary research field with two ultimate aims: the theoretical goal of understanding argumentation as a cognitive phenomenon by modeling it in computer programs, and the practical goal of supporting the development of computer-based systems able to engage in argumentation-related activities with human users or among themselves. The biennial International Conferences on Computational Models of Argument (COMMA) provide a dedicated forum for the presentation and discussion of the latest advancements in the field, and cover both basic research and innovative applications. This book presents the proceedings of COMMA 2020. Due to the Covid-19 pandemic, COMMA 2020 was held as an online event on the originally scheduled dates of 8 -11 September 2020, organised by the University of Perugia, Italy. The book includes 28 full papers and 13 short papers selected from a total of 78 submissions, the abstracts of 3 invited talks and 13 demonstration abstracts. The interdisciplinary nature of the field is reflected, and contributions cover both theory and practice. Theoretical contributions include new formal models, the study of formal or computational properties of models, designs for implemented systems and experimental research. Practical papers include applications to medicine, law and criminal investigation, chatbots and online product reviews. The argument-mining trend from previous COMMA’s is continued, while an emerging trend this year is the use of argumentation for explainable AI. The book provided an overview of the latest work on computational models of argument, and will be of interest to all those working in the field.

Introduction to Computational Models with Python

Introduction to Computational Models with Python PDF

Author: Jose M. Garrido

Publisher: CRC Press

Published: 2015-08-28

Total Pages: 492

ISBN-13: 1498712045

DOWNLOAD EBOOK →

Introduction to Computational Models with Python explains how to implement computational models using the flexible and easy-to-use Python programming language. The book uses the Python programming language interpreter and several packages from the huge Python Library that improve the performance of numerical computing, such as the Numpy and Scipy m

Computational Modeling of Biological Systems

Computational Modeling of Biological Systems PDF

Author: Nikolay V Dokholyan

Publisher: Springer Science & Business Media

Published: 2012-02-12

Total Pages: 360

ISBN-13: 1461421454

DOWNLOAD EBOOK →

Computational modeling is emerging as a powerful new approach to study and manipulate biological systems. Multiple methods have been developed to model, visualize, and rationally alter systems at various length scales, starting from molecular modeling and design at atomic resolution to cellular pathways modeling and analysis. Higher time and length scale processes, such as molecular evolution, have also greatly benefited from new breeds of computational approaches. This book provides an overview of the established computational methods used for modeling biologically and medically relevant systems.