Computational Modeling of Inorganic Nanomaterials

Computational Modeling of Inorganic Nanomaterials PDF

Author: Stefan T. Bromley

Publisher: CRC Press

Published: 2016-04-06

Total Pages: 429

ISBN-13: 1466576448

DOWNLOAD EBOOK →

Computational Modeling of Inorganic Nanomaterials provides an accessible, unified introduction to a variety of methods for modeling inorganic materials as their dimensions approach the nanoscale. With contributions from a team of international experts, the book guides readers on choosing the most appropriate models and methods for studying the stru

Computational Modelling of Nanoparticles

Computational Modelling of Nanoparticles PDF

Author: Stefan T. Bromley

Publisher: Elsevier

Published: 2018-09-12

Total Pages: 351

ISBN-13: 0081022751

DOWNLOAD EBOOK →

Computational Modelling of Nanoparticles highlights recent advances in the power and versatility of computational modelling, experimental techniques, and how new progress has opened the door to a more detailed and comprehensive understanding of the world of nanomaterials. Nanoparticles, having dimensions of 100 nanometers or less, are increasingly being used in applications in medicine, materials and manufacturing, and energy. Spanning the smallest sub-nanometer nanoclusters to nanocrystals with diameters of 10s of nanometers, this book provides a state-of-the-art overview on how computational modelling can provide, often otherwise unobtainable, insights into nanoparticulate structure and properties. This comprehensive, single resource is ideal for researchers who want to start/improve their nanoparticle modelling efforts, learn what can be (and what cannot) achieved with computational modelling, and understand more clearly the value and details of computational modelling efforts in their area of research. Explores how computational modelling can be successfully applied at the nanoscale level Includes techniques for the computation modelling of different types of nanoclusters, including nanoalloy clusters, fullerines and Ligated and/or solvated nanoclusters Offers complete coverage of the use of computational modelling at the nanoscale, from characterization and processing, to applications

Computational Investigation of Bio/inorganic Interfaces

Computational Investigation of Bio/inorganic Interfaces PDF

Author: Liuyang Zhang

Publisher:

Published: 2016

Total Pages: 360

ISBN-13:

DOWNLOAD EBOOK →

In the field of nanotechnology, the bio/inorganic interface is of great importance when determining the physical properties of nanostructures and nanocomposites. Nanomaterials are very likely to contact with biological organisms and associated organic molecules, such as when used for drug delivery and imaging, which establishes a series of interfaces between the nanomaterials and biological systems. Until now, these factors are still difficult to be characterized from experimental work directly. To rectify this, multiscale computational modeling is adopted in this dissertation to properly determine the interfacial properties of the bio/inorganic interface under a variety of conditions. The interfacial properties between the inorganic material and polymer, biological macromolecules and cell will be systematically investigated by the computational modeling and simulation technique. Our findings will open a new avenue for computational material design and biocompatible device fabrication.

Photoactive Inorganic Nanoparticles

Photoactive Inorganic Nanoparticles PDF

Author: Julia Pérez Prieto

Publisher: Elsevier

Published: 2019-03-09

Total Pages: 284

ISBN-13: 0128145323

DOWNLOAD EBOOK →

Nanoparticles are usually designed for specific applications and selection of the most convenient capping can be a complex task, but is crucial for successful design. In this volume, the authors discuss the selection of functional cappings to coat nanoparticles in a range of different applications. The opening chapter provides an understanding of basic aspects of surface chemistry at the nanoscale. Each following chapter covers a particular kind of capping, beginning with a basic introduction and describing characteristics such as structure, functionality, solubility, (photo)physics, and toxicity. Special emphasis is placed on how important these specific features are in the preparation of smart nanomaterials. In-depth explanations and examples are then presented, highlighting the latest results and cutting-edge research carried out with the selected capping according to the kind of nanoparticle employed (such as rare-earth doped, semiconducting, and metallic). An additional chapter focusses on computational techniques for modelling nanosurfaces. Photoactive Inorganic Nanoparticles: Surface Composition and its Role in Nanosystem Functionality will be a valuable working resource for graduate students, researchers, and industry R&D professionals working in the field of applied nanomaterials. Aids selection of the best functional cappings for particular applications Covers a broad range of application areas, including medical, biological and materials science Provides material on computational techniques for modeling nanosurfaces

Computational Modelling of Nanomaterials

Computational Modelling of Nanomaterials PDF

Author: Panagiotis Grammatikopoulos

Publisher: Elsevier

Published: 2020-09-30

Total Pages: 244

ISBN-13: 0128214988

DOWNLOAD EBOOK →

Due to their small size and their dependence on very fast phenomena, nanomaterials are ideal systems for computational modelling. This book provides an overview of various nanosystems classified by their dimensions: 0D (nanoparticles, QDs, etc.), 1D (nanowires, nanotubes), 2D (thin films, graphene, etc.), 3D (nanostructured bulk materials, devices). Fractal dimensions, such as nanoparticle agglomerates, percolating films and combinations of materials of different dimensionalities are also covered (e.g. epitaxial decoration of nanowires by nanoparticles, i.e. 0D+1D nanomaterials). For each class, the focus will be on growth, structure, and physical/chemical properties. The book presents a broad range of techniques, including density functional theory, molecular dynamics, non-equilibrium molecular dynamics, finite element modelling (FEM), numerical modelling and meso-scale modelling. The focus is on each method’s relevance and suitability for the study of materials and phenomena in the nanoscale. This book is an important resource for understanding the mechanisms behind basic properties of nanomaterials, and the major techniques for computational modelling of nanomaterials. Explores the major modelling techniques used for different classes of nanomaterial Assesses the best modelling technique to use for each different type of nanomaterials Discusses the challenges of using certain modelling techniques with specific nanomaterials

Theoretical Modeling of Inorganic Nanostructures

Theoretical Modeling of Inorganic Nanostructures PDF

Author: R. A. Evarestov

Publisher: Springer Nature

Published: 2020-06-10

Total Pages: 865

ISBN-13: 3030429946

DOWNLOAD EBOOK →

This book summarizes the state of the art in the theoretical modeling of inorganic nanostructures. Extending the first edition, published in 2015, it presents applications to new nanostructured materials and theoretical explanations of recently discovered optical and thermodynamic properties of known nanomaterials. It discusses the developments in theoretical modeling of nanostructures, describing fundamental approaches such as symmetry analysis and applied calculation methods. The book also examines the theoretical aspects of many thermodynamic and the optical properties of nanostructures. The new edition includes additional descriptions of the theoretical modeling of nanostructures in novel materials such as the V2O5 binary oxide, ZnS, CdS, MoSSe and SnS2.

Multifunctional Inorganic Nanomaterials for Energy Applications

Multifunctional Inorganic Nanomaterials for Energy Applications PDF

Author: H.P. Nagaswarupa

Publisher: CRC Press

Published: 2024-06-19

Total Pages: 451

ISBN-13: 1040029418

DOWNLOAD EBOOK →

Multifunctional Inorganic Nanomaterials for Energy Applications provides deep insight into the role of multifunctional nanomaterials in the field of energy and power generation applications. It mainly focuses on the synthesis, fabrication, design, development, and optimization of novel functional inorganic nanomaterials for energy storage and saving devices. It also covers studies of inorganic electrode materials for supercapacitors, membranes for batteries and fuel cells, and materials for display systems and energy generation. Features: Explores computational and experimental methods of preparing inorganic nanomaterials and their multifunctional applications Includes synthesis and performance analysis of various functional nanomaterials for energy storage and saving applications Reviews current research directions and latest developments in the field of energy materials Discusses importance of computational techniques in designing novel nanomaterials Highlights importance of multifunctional applications of nanomaterials in the energy sector This book is aimed at graduate students and researchers in materials science, electrical engineering, and nanomaterials.

Computational Nanotoxicology

Computational Nanotoxicology PDF

Author: Agnieszka Gajewicz

Publisher: CRC Press

Published: 2019-11-13

Total Pages: 570

ISBN-13: 1000680886

DOWNLOAD EBOOK →

The development of computational methods that support human health and environmental risk assessment of engineered nanomaterials (ENMs) has attracted great interest because the application of these methods enables us to fill existing experimental data gaps. However, considering the high degree of complexity and multifunctionality of ENMs, computational methods originally developed for regular chemicals cannot always be applied explicitly in nanotoxicology. This book discusses the current state of the art and future needs in the development of computational modeling techniques for nanotoxicology. It focuses on (i) computational chemistry (quantum mechanics, semi-empirical methods, density functional theory, molecular mechanics, molecular dynamics), (ii) nanochemoinformatic methods (quantitative structure–activity relationship modeling, grouping, read-across), and (iii) nanobioinformatic methods (genomics, transcriptomics, proteomics, metabolomics). It reviews methods of calculating molecular descriptors sufficient to characterize the structure of nanoparticles, specifies recent trends in the validation of computational methods, and discusses ways to cope with the uncertainty of predictions. In addition, it highlights the status quo and further challenges in the application of computational methods in regulation (e.g., REACH, OECD) and in industry for product development and optimization and the future directions for increasing acceptance of computational modeling for nanotoxicology.

Inorganic Two-dimensional Nanomaterials

Inorganic Two-dimensional Nanomaterials PDF

Author: Changzheng Wu

Publisher: Royal Society of Chemistry

Published: 2017-08-22

Total Pages: 428

ISBN-13: 1788012062

DOWNLOAD EBOOK →

Inorganic 2D nanomaterials, or inorganic graphene analogues, are gaining great attention due to their unique properties and potential energy applications. They contain ultrathin nanosheet morphology with one-dimensional confinement, but unlike pure carbon graphene, inorganic two-dimensional nanomaterials have a more abundant elemental composition and can form different crystallographic structures. These properties contribute to their unique chemical reaction activity, tunable physical properties and facilitate applications in the field of energy conversion and storage. Inorganic Two-dimensional Nanomaterials details the development of the nanostructures from computational simulation and theoretical understanding to their synthesis and characterization. Individual chapters then cover different applications of the materials as electrocatalysts, flexible supercapicitors, flexible lithium ion batteries and thermoelectrical devices. The book provides a comprehensive overview of the field for researchers working in the areas of materials chemistry, physics, energy and catalysis.