Computational Materials Science of Polymers

Computational Materials Science of Polymers PDF

Author: Andreĭ Aleksandrovich Askadskiĭ

Publisher: Cambridge Int Science Publishing

Published: 2003

Total Pages: 702

ISBN-13: 1898326622

DOWNLOAD EBOOK →

Annotation Methods of quantitative analysis of the effect of the chemical structure of linear and network polymers on their properties, computer synthesis of polymers with specific physical properties.

Computational Materials Science

Computational Materials Science PDF

Author: Kaoru Ohno

Publisher: Springer

Published: 2018-04-14

Total Pages: 427

ISBN-13: 3662565420

DOWNLOAD EBOOK →

This textbook introduces modern techniques based on computer simulation to study materials science. It starts from first principles calculations enabling to calculate the physical and chemical properties by solving a many-body Schroedinger equation with Coulomb forces. For the exchange-correlation term, the local density approximation is usually applied. After the introduction of the first principles treatment, tight-binding and classical potential methods are briefly introduced to indicate how one can increase the number of atoms in the system. In the second half of the book, Monte Carlo simulation is discussed in detail. Problems and solutions are provided to facilitate understanding. Readers will gain sufficient knowledge to begin theoretical studies in modern materials research. This second edition includes a lot of recent theoretical techniques in materials research. With the computers power now available, it is possible to use these numerical techniques to study various physical and chemical properties of complex materials from first principles. The new edition also covers empirical methods, such as tight-binding and molecular dynamics.

Materials Science of Polymers

Materials Science of Polymers PDF

Author: A. K. Haghi

Publisher: CRC Press

Published: 2015-05-27

Total Pages: 383

ISBN-13: 1482299135

DOWNLOAD EBOOK →

Technical and technological development demands the creation of new materials that are stronger, more reliable, and more durable-materials with new properties. This book skillfully blends and integrates polymer science, plastic technology, and rubber technology to highlight new developments and trends in advanced polyblends. The fundamentals of pol

Computational Modeling of Polymer Composites

Computational Modeling of Polymer Composites PDF

Author: Samit Roy

Publisher: CRC Press

Published: 2013-09-05

Total Pages: 296

ISBN-13: 1466586508

DOWNLOAD EBOOK →

This book provides a better understanding of the theories associated with finite element models of elastic and viscoelastic response of polymers and polymer composites. It covers computational modeling and life-prediction of polymers and polymeric composites in aggressive environments. It begins with a review of mathematical preliminaries, equations of anisotropic elasticity, and then presents finite element analysis of viscoelasticity and the diffusion process in polymers and polymeric composites. The book provides a reference for engineers and scientists and can be used as a textbook in graduate courses.

Mechanics of Solid Polymers

Mechanics of Solid Polymers PDF

Author: Jorgen S Bergstrom

Publisher: William Andrew

Published: 2015-07-11

Total Pages: 524

ISBN-13: 0323322964

DOWNLOAD EBOOK →

Very few polymer mechanics problems are solved with only pen and paper today, and virtually all academic research and industrial work relies heavily on finite element simulations and specialized computer software. Introducing and demonstrating the utility of computational tools and simulations, Mechanics of Solid Polymers provides a modern view of how solid polymers behave, how they can be experimentally characterized, and how to predict their behavior in different load environments. Reflecting the significant progress made in the understanding of polymer behaviour over the last two decades, this book will discuss recent developments and compare them to classical theories. The book shows how best to make use of commercially available finite element software to solve polymer mechanics problems, introducing readers to the current state of the art in predicting failure using a combination of experiment and computational techniques. Case studies and example Matlab code are also included. As industry and academia are increasingly reliant on advanced computational mechanics software to implement sophisticated constitutive models – and authoritative information is hard to find in one place - this book provides engineers with what they need to know to make best use of the technology available. Helps professionals deploy the latest experimental polymer testing methods to assess suitability for applications Discusses material models for different polymer types Shows how to best make use of available finite element software to model polymer behaviour, and includes case studies and example code to help engineers and researchers apply it to their work

Computational Materials Chemistry

Computational Materials Chemistry PDF

Author: L.A. Curtiss

Publisher: Springer Science & Business Media

Published: 2006-01-16

Total Pages: 381

ISBN-13: 1402021178

DOWNLOAD EBOOK →

As a result of the advancements in algorithms and the huge increase in speed of computers over the past decade, electronic structure calculations have evolved into a valuable tool for characterizing surface species and for elucidating the pathways for their formation and reactivity. It is also now possible to calculate, including electric field effects, STM images for surface structures. To date the calculation of such images has been dominated by density functional methods, primarily because the computational cost of - curate wave-function based calculations using either realistic cluster or slab models would be prohibitive. DFT calculations have proven especially valuable for elucidating chemical processes on silicon and other semiconductor surfaces. However, it is also clear that some of the systems to which DFT methods have been applied have large non-dynamical correlation effects, which may not be properly handled by the current generation of Kohn-Sham-based density functionals. For example, our CASSCF calculations on the Si(001)/acetylene system reveal that at some geometries there is extensive 86 configuration mixing. This, in turn, could signal problems for DFT cal- lations on these systems. Some of these problem systems can be addressed using ONIOM or other “layering” methods, treating the primary region of interest with a CASMP2 or other multireference-based method, and treating the secondary region by a lower level of electronic structure theory or by use of a molecular mechanics method. ACKNOWLEDGEMENTS We wish to thank H. Jónsson, C. Sosa, D. Sorescu, P. Nachtigall, and T. -C.

Computational and Experimental Analysis of Functional Materials

Computational and Experimental Analysis of Functional Materials PDF

Author: Oleksandr V. Reshetnyak

Publisher: CRC Press

Published: 2017-03-27

Total Pages: 356

ISBN-13: 1315342138

DOWNLOAD EBOOK →

This book looks at the synthesis of polyaniline by different methods, under different conditions, for various applications, and presents studies of its properties by a wide range of the modern physic-chemical methods. The book provides a comprehensive analysis of experimental results from the point of view of the correlations in the triad synthesis conditions–structurephysico–chemical properties. It combines the results of experimental investigations and original methodology of the description of physical–chemical and electrochemical phenomena at interface surfaces, showing an influence of such phenomena on the applied aspects of the polyaniline and nanocomposites on its basis applications.

Pmse Preprints

Pmse Preprints PDF

Author: American Chemical Society Staff

Publisher: Elsevier Science Limited

Published: 2004-04-01

Total Pages:

ISBN-13: 9780841239210

DOWNLOAD EBOOK →

Computational Studies, Nanotechnology, and Solution Thermodynamics of Polymer Systems

Computational Studies, Nanotechnology, and Solution Thermodynamics of Polymer Systems PDF

Author: Mark D. Dadmun

Publisher: Springer Science & Business Media

Published: 2007-05-08

Total Pages: 182

ISBN-13: 0306471108

DOWNLOAD EBOOK →

This text is the published version of many ofthe talks presented at two symposiums held as part of the Southeast Regional Meeting of the American Chemical Society (SERMACS) in Knoxville, TN in October, 1999. The Symposiums, entitled Solution Thermodynamics of Polymers and Computational Polymer Science and Nanotechnology, provided outlets to present and discuss problems of current interest to polymer scientists. It was, thus, decided to publish both proceedings in a single volume. The first part of this collection contains printed versions of six of the ten talks presented at the Symposium on Solution Thermodynamics of Polymers organized by Yuri B. Melnichenko and W. Alexander Van Hook. The two sessions, further described below, stimulated interesting and provocative discussions. Although not every author chose to contribute to the proceedings volume, the papers that are included faithfully represent the scope and quality of the symposium. The remaining two sections are based on the symposium on Computational Polymer Science and Nanotechnology organized by Mark D. Dadmun, Bobby G. Sumpter, and Don W. Noid. A diverse and distinguished group of polymer and materials scientists, biochemists, chemists and physicists met to discuss recent research in the broad field of computational polymer science and nanotechnology. The two-day oral session was also complemented by a number of poster presentations. The first article of this section is on the important subject of polymer blends. M. D.

Computer Simulation of Polymeric Materials

Computer Simulation of Polymeric Materials PDF

Author: Japan Association for Chemical Innovation

Publisher: Springer

Published: 2016-07-30

Total Pages: 391

ISBN-13: 9811008159

DOWNLOAD EBOOK →

This book is the first to introduce a mesoscale polymer simulation system called OCTA. With its name derived from "Open Computational Tool for Advanced material technology," OCTA is a unique software product, available without charge, that was developed in a project funded by Japanese government. OCTA contains a series of simulation programs focused on mesoscale simulation of the soft matter COGNAC, SUSHI, PASTA, NAPLES, MUFFIN, and KAPSEL. When mesoscale polymer simulation is performed, one may encounter many difficulties that this book will help to overcome. The book not only introduces the theoretical background and functions of each simulation engine, it also provides many examples of the practical applications of the OCTA system. Those examples include predicting mechanical properties of plastic and rubber, morphology formation of polymer blends and composites, the micelle structure of surfactants, and optical properties of polymer films. This volume is strongly recommended as a valuable resource for both academic and industrial researchers who work in polymer simulation.