Computational Geometry

Computational Geometry PDF

Author: Mark de Berg

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 370

ISBN-13: 3662042452

DOWNLOAD EBOOK →

This introduction to computational geometry focuses on algorithms. Motivation is provided from the application areas as all techniques are related to particular applications in robotics, graphics, CAD/CAM, and geographic information systems. Modern insights in computational geometry are used to provide solutions that are both efficient and easy to understand and implement.

Handbook of Discrete and Computational Geometry, Second Edition

Handbook of Discrete and Computational Geometry, Second Edition PDF

Author: Csaba D. Toth

Publisher: CRC Press

Published: 2004-04-13

Total Pages: 1557

ISBN-13: 1420035312

DOWNLOAD EBOOK →

While high-quality books and journals in this field continue to proliferate, none has yet come close to matching the Handbook of Discrete and Computational Geometry, which in its first edition, quickly became the definitive reference work in its field. But with the rapid growth of the discipline and the many advances made over the past seven years, it's time to bring this standard-setting reference up to date. Editors Jacob E. Goodman and Joseph O'Rourke reassembled their stellar panel of contributors, added manymore, and together thoroughly revised their work to make the most important results and methods, both classic and cutting-edge, accessible in one convenient volume. Now over more then 1500 pages, the Handbook of Discrete and Computational Geometry, Second Edition once again provides unparalleled, authoritative coverage of theory, methods, and applications. Highlights of the Second Edition: Thirteen new chapters: Five on applications and others on collision detection, nearest neighbors in high-dimensional spaces, curve and surface reconstruction, embeddings of finite metric spaces, polygonal linkages, the discrepancy method, and geometric graph theory Thorough revisions of all remaining chapters Extended coverage of computational geometry software, now comprising two chapters: one on the LEDA and CGAL libraries, the other on additional software Two indices: An Index of Defined Terms and an Index of Cited Authors Greatly expanded bibliographies

Computational Geometry

Computational Geometry PDF

Author: Franco P. Preparata

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 413

ISBN-13: 1461210984

DOWNLOAD EBOOK →

From the reviews: "This book offers a coherent treatment, at the graduate textbook level, of the field that has come to be known in the last decade or so as computational geometry. ... ... The book is well organized and lucidly written; a timely contribution by two founders of the field. It clearly demonstrates that computational geometry in the plane is now a fairly well-understood branch of computer science and mathematics. It also points the way to the solution of the more challenging problems in dimensions higher than two." #Mathematical Reviews#1 "... This remarkable book is a comprehensive and systematic study on research results obtained especially in the last ten years. The very clear presentation concentrates on basic ideas, fundamental combinatorial structures, and crucial algorithmic techniques. The plenty of results is clever organized following these guidelines and within the framework of some detailed case studies. A large number of figures and examples also aid the understanding of the material. Therefore, it can be highly recommended as an early graduate text but it should prove also to be essential to researchers and professionals in applied fields of computer-aided design, computer graphics, and robotics." #Biometrical Journal#2

Handbook of Discrete and Computational Geometry

Handbook of Discrete and Computational Geometry PDF

Author: Csaba D. Toth

Publisher: CRC Press

Published: 2017-11-22

Total Pages: 2879

ISBN-13: 1351645919

DOWNLOAD EBOOK →

The Handbook of Discrete and Computational Geometry is intended as a reference book fully accessible to nonspecialists as well as specialists, covering all major aspects of both fields. The book offers the most important results and methods in discrete and computational geometry to those who use them in their work, both in the academic world—as researchers in mathematics and computer science—and in the professional world—as practitioners in fields as diverse as operations research, molecular biology, and robotics. Discrete geometry has contributed significantly to the growth of discrete mathematics in recent years. This has been fueled partly by the advent of powerful computers and by the recent explosion of activity in the relatively young field of computational geometry. This synthesis between discrete and computational geometry lies at the heart of this Handbook. A growing list of application fields includes combinatorial optimization, computer-aided design, computer graphics, crystallography, data analysis, error-correcting codes, geographic information systems, motion planning, operations research, pattern recognition, robotics, solid modeling, and tomography.

Discrete and Computational Geometry

Discrete and Computational Geometry PDF

Author: Satyan L. Devadoss

Publisher: Princeton University Press

Published: 2011-04-11

Total Pages: 270

ISBN-13: 1400838983

DOWNLOAD EBOOK →

An essential introduction to discrete and computational geometry Discrete geometry is a relatively new development in pure mathematics, while computational geometry is an emerging area in applications-driven computer science. Their intermingling has yielded exciting advances in recent years, yet what has been lacking until now is an undergraduate textbook that bridges the gap between the two. Discrete and Computational Geometry offers a comprehensive yet accessible introduction to this cutting-edge frontier of mathematics and computer science. This book covers traditional topics such as convex hulls, triangulations, and Voronoi diagrams, as well as more recent subjects like pseudotriangulations, curve reconstruction, and locked chains. It also touches on more advanced material, including Dehn invariants, associahedra, quasigeodesics, Morse theory, and the recent resolution of the Poincaré conjecture. Connections to real-world applications are made throughout, and algorithms are presented independently of any programming language. This richly illustrated textbook also features numerous exercises and unsolved problems. The essential introduction to discrete and computational geometry Covers traditional topics as well as new and advanced material Features numerous full-color illustrations, exercises, and unsolved problems Suitable for sophomores in mathematics, computer science, engineering, or physics Rigorous but accessible An online solutions manual is available (for teachers only).

Handbook of Computational Geometry

Handbook of Computational Geometry PDF

Author: J.R. Sack

Publisher: Elsevier

Published: 1999-12-13

Total Pages: 1087

ISBN-13: 0080529682

DOWNLOAD EBOOK →

Computational Geometry is an area that provides solutions to geometric problems which arise in applications including Geographic Information Systems, Robotics and Computer Graphics. This Handbook provides an overview of key concepts and results in Computational Geometry. It may serve as a reference and study guide to the field. Not only the most advanced methods or solutions are described, but also many alternate ways of looking at problems and how to solve them.

Computational Geometry and Its Applications

Computational Geometry and Its Applications PDF

Author: Hartmut Noltemeier

Publisher: Springer Science & Business Media

Published: 1988-10-12

Total Pages: 264

ISBN-13: 9783540503354

DOWNLOAD EBOOK →

The International Workshop CG '88 on "Computational Geometry" was held at the University of Würzburg, FRG, March 24-25, 1988. As the interest in the fascinating field of Computational Geometry and its Applications has grown very quickly in recent years the organizers felt the need to have a workshop, where a suitable number of invited participants could concentrate their efforts in this field to cover a broad spectrum of topics and to communicate in a stimulating atmosphere. This workshop was attended by some fifty invited scientists. The scientific program consisted of 22 contributions, of which 18 papers with one additional paper (M. Reichling) are contained in the present volume. The contributions covered important areas not only of fundamental aspects of Computational Geometry but a lot of interesting and most promising applications: Algorithmic Aspects of Geometry, Arrangements, Nearest-Neighbor-Problems and Abstract Voronoi-Diagrams, Data Structures for Geometric Objects, Geo-Relational Algebra, Geometric Modeling, Clustering and Visualizing Geometric Objects, Finite Element Methods, Triangulating in Parallel, Animation and Ray Tracing, Robotics: Motion Planning, Collision Avoidance, Visibility, Smooth Surfaces, Basic Models of Geometric Computations, Automatizing Geometric Proofs and Constructions.

Computational Geometry, Topology and Physics of Digital Images with Applications

Computational Geometry, Topology and Physics of Digital Images with Applications PDF

Author: James F. Peters

Publisher: Springer Nature

Published: 2019-10-03

Total Pages: 440

ISBN-13: 303022192X

DOWNLOAD EBOOK →

This book discusses the computational geometry, topology and physics of digital images and video frame sequences. This trio of computational approaches encompasses the study of shape complexes, optical vortex nerves and proximities embedded in triangulated video frames and single images, while computational geometry focuses on the geometric structures that infuse triangulated visual scenes. The book first addresses the topology of cellular complexes to provide a basis for an introductory study of the computational topology of visual scenes, exploring the fabric, shapes and structures typically found in visual scenes. The book then examines the inherent geometry and topology of visual scenes, and the fine structure of light and light caustics of visual scenes, which bring into play catastrophe theory and the appearance of light caustic folds and cusps. Following on from this, the book introduces optical vortex nerves in triangulated digital images. In this context, computational physics is synonymous with the study of the fine structure of light choreographed in video frames. This choreography appears as a sequence of snapshots of light reflected and refracted from surface shapes, providing a solid foundation for detecting, analyzing and classifying visual scene shapes.

Polyhedral and Algebraic Methods in Computational Geometry

Polyhedral and Algebraic Methods in Computational Geometry PDF

Author: Michael Joswig

Publisher: Springer Science & Business Media

Published: 2013-01-04

Total Pages: 251

ISBN-13: 1447148177

DOWNLOAD EBOOK →

Polyhedral and Algebraic Methods in Computational Geometry provides a thorough introduction into algorithmic geometry and its applications. It presents its primary topics from the viewpoints of discrete, convex and elementary algebraic geometry. The first part of the book studies classical problems and techniques that refer to polyhedral structures. The authors include a study on algorithms for computing convex hulls as well as the construction of Voronoi diagrams and Delone triangulations. The second part of the book develops the primary concepts of (non-linear) computational algebraic geometry. Here, the book looks at Gröbner bases and solving systems of polynomial equations. The theory is illustrated by applications in computer graphics, curve reconstruction and robotics. Throughout the book, interconnections between computational geometry and other disciplines (such as algebraic geometry, optimization and numerical mathematics) are established. Polyhedral and Algebraic Methods in Computational Geometry is directed towards advanced undergraduates in mathematics and computer science, as well as towards engineering students who are interested in the applications of computational geometry.