Computational Fourier Optics

Computational Fourier Optics PDF

Author: Jim Bernard Breckinridge

Publisher: SPIE-International Society for Optical Engineering

Published: 2011

Total Pages: 232

ISBN-13: 9780819482044

DOWNLOAD EBOOK →

Computational Fourier Optics is a text that shows the reader in a tutorial form how to implement Fourier optical theory and analytic methods on the computer. A primary objective is to give students of Fourier optics the capability of programming their own basic wave optic beam propagations and imaging simulations. The book will also be of interest to professional engineers and physicists learning Fourier optics simulation techniques-either as a self-study text or a text for a short course. For more advanced study, the latter chapters and appendices provide methods and examples for modeling beams and pupil functions with more complicated structure, aberrations, and partial coherence. For a student in a course on Fourier optics, this book is a concise, accessible, and practical companion to any of several excellent textbooks on Fourier optical theory.

Fourier Optics and Computational Imaging

Fourier Optics and Computational Imaging PDF

Author: Kedar Khare

Publisher: John Wiley & Sons

Published: 2015-09-21

Total Pages: 312

ISBN-13: 1118900340

DOWNLOAD EBOOK →

This book covers both the mathematics of inverse problems and optical systems design, and includes a review of the mathematical methods and Fourier optics. The first part of the book deals with the mathematical tools in detail with minimal assumption about prior knowledge on the part of the reader. The second part of the book discusses concepts in optics, particularly propagation of optical waves and coherence properties of optical fields that form the basis of the computational models used for image recovery. The third part provides a discussion of specific imaging systems that illustrate the power of the hybrid computational imaging model in enhancing imaging performance. A number of exercises are provided for readers to develop further understanding of computational imaging. While the focus of the book is largely on optical imaging systems, the key concepts are discussed in a fairly general manner so as to provide useful background for understanding the mechanisms of a diverse range of imaging modalities.

Fourier Optics in Image Processing

Fourier Optics in Image Processing PDF

Author: Neil Collings

Publisher: CRC Press

Published: 2018-05-30

Total Pages: 178

ISBN-13: 0429865325

DOWNLOAD EBOOK →

This much-needed text brings the treatment of optical pattern recognition up-to-date in one comprehensive resource. Optical pattern recognition, one of the first implementations of Fourier Optics, is now widely used, and this text provides an accessible introduction for readers who wish to get to grips with how holography is applied in a practical context. A wide range of devices are addressed from a user perspective and are accompanied with detailed tables enabling performance comparison, in addition to chapters exploring computer-generated holograms, optical correlator systems, and pattern matching algorithms. This book will appeal to both lecturers and research scientists in the field of electro-optic devices and systems. Features: Covers a range of new developments, including computer-generated holography and 3D image recognition Accessible without a range of prior knowledge, providing a clear exposition of technically difficult concepts Contains extensive examples throughout to reinforce learning

Linear Systems, Fourier Transforms, and Optics

Linear Systems, Fourier Transforms, and Optics PDF

Author: Jack D. Gaskill

Publisher: John Wiley & Sons

Published: 1978-06-16

Total Pages: 580

ISBN-13: 0471292885

DOWNLOAD EBOOK →

A complete and balanced account of communication theory, providing an understanding of both Fourier analysis (and the concepts associated with linear systems) and the characterization of such systems by mathematical operators. Presents applications of the theories to the diffraction of optical wave-fields and the analysis of image-forming systems. Emphasizes a strong mathematical foundation and includes an in-depth consideration of the phenomena of diffraction. Combines all theories to describe the image-forming process in terms of a linear filtering operation for both coherent and incoherent imaging. Chapters provide carefully designed sets of problems. Also includes extensive tables of properties and pairs of Fourier transforms and Hankle Transforms.

Fourier Ptychographic Imaging

Fourier Ptychographic Imaging PDF

Author: Guoan Zheng

Publisher: Morgan & Claypool Publishers

Published: 2016-06-30

Total Pages: 113

ISBN-13: 1681742748

DOWNLOAD EBOOK →

This book demonstrates the concept of Fourier ptychography, a new imaging technique that bypasses the resolution limit of the employed optics. In particular, it transforms the general challenge of high-throughput, high-resolution imaging from one that is coupled to the physical limitations of the optics to one that is solvable through computation. Demonstrated in a tutorial form and providing many MATLAB® simulation examples for the reader, it also discusses the experimental implementation and recent developments of Fourier ptychography. This book will be of interest to researchers and engineers learning simulation techniques for Fourier optics and the Fourier ptychography concept.

Optics

Optics PDF

Author: Karl Dieter Moeller

Publisher: Springer Science & Business Media

Published: 2007-08-08

Total Pages: 459

ISBN-13: 0387261680

DOWNLOAD EBOOK →

This new edition is intended for a one semester course in optics for juniors and seniors in science and engineering. It uses scripts from Maple, MathCad, Mathematica, and MATLAB to provide a simulated laboratory where students can learn by exploration and discovery instead of passive absorption. The text covers all the standard topics of a traditional optics course. It contains step by step derivations of all basic formulas in geometrical, wave and Fourier optics. The threefold arrangement of text, applications, and files makes the book suitable for "self-learning" by scientists or engineers who would like to refresh their knowledge of optics.

Numerical Simulation of Optical Wave Propagation with Examples in MATLAB

Numerical Simulation of Optical Wave Propagation with Examples in MATLAB PDF

Author: Jason Daniel Schmidt

Publisher: Society of Photo Optical

Published: 2010

Total Pages: 196

ISBN-13: 9780819483263

DOWNLOAD EBOOK →

Numerical Simulation of Optical Wave Propagation is solely dedicated to wave-optics simulations. The book discusses digital Fourier transforms (FT), FT-based operations, multiple methods of wave-optics simulations, sampling requirements, and simulations in atmospheric turbulence.

Introduction to Fourier Optics

Introduction to Fourier Optics PDF

Author: Joseph W. Goodman

Publisher: McGraw-Hill Companies

Published: 1968

Total Pages: 312

ISBN-13:

DOWNLOAD EBOOK →

This renowned text applies the powerful mathematical methods of fourier analysis to the analysis and synthesis of optical systems. These ubiquitous mathematical tools provide unique insights into the capabilities and limitations of optical systems in both imaging and information processing and lead to many fascinating applications, including the field of holography.

Fourier Optics and Computational Imaging

Fourier Optics and Computational Imaging PDF

Author: Kedar Khare

Publisher: Springer Nature

Published: 2023-01-02

Total Pages: 295

ISBN-13: 3031183533

DOWNLOAD EBOOK →

The book is designed to serve as a textbook for advanced undergraduate and graduate students enrolled in physics and electronics and communication engineering and mathematics. The book provides an introduction to Fourier optics in light of new developments in the area of computational imaging over the last couple of decades. There is an in-depth discussion of mathematical methods such as Fourier analysis, linear systems theory, random processes, and optimization-based image reconstruction techniques. These techniques are very much essential for a better understanding of the working of computational imaging systems. It discusses topics in Fourier optics, e.g., diffraction phenomena, coherent and incoherent imaging systems, and some aspects of coherence theory. These concepts are then used to describe several system ideas that combine optical hardware design and image reconstruction algorithms, such as digital holography, iterative phase retrieval, super-resolution imaging, point spread function engineering for enhanced depth-of-focus, projection-based imaging, single-pixel or ghost imaging, etc. The topics covered in this book can provide an elementary introduction to the exciting area of computational imaging for students who may wish to work with imaging systems in their future careers.