Computational Biochemistry and Biophysics

Computational Biochemistry and Biophysics PDF

Author: Oren M. Becker

Publisher: CRC Press

Published: 2001-02-09

Total Pages: 525

ISBN-13: 0824741404

DOWNLOAD EBOOK →

Covering theoretical methods and computational techniques in biomolecular research, this book focuses on approaches for the treatment of macromolecules, including proteins, nucleic acids, and bilayer membranes. It uses concepts in free energy calculations, conformational analysis, reaction rates, and transition pathways to calculate and interpret biomolecular properties gleaned from computer-generated membrane simulations. It also demonstrates comparative protein structure modeling, outlines computer-aided drug design, discusses Bayesian statistics in molecular and structural biology, and examines the RISM-SCF/MCSCF approach to chemical processes in solution.

Computational Biochemistry and Biophysics

Computational Biochemistry and Biophysics PDF

Author: Oren M. Becker

Publisher: CRC Press

Published: 2001-02-09

Total Pages: 534

ISBN-13: 9780203903827

DOWNLOAD EBOOK →

Covering theoretical methods and computational techniques in biomolecular research, this book focuses on approaches for the treatment of macromolecules, including proteins, nucleic acids, and bilayer membranes. It uses concepts in free energy calculations, conformational analysis, reaction rates, and transition pathways to calculate and interpret b

Computational Biochemistry and Biophysics

Computational Biochemistry and Biophysics PDF

Author: Oren M. Becker

Publisher: CRC Press

Published: 2001-02-09

Total Pages: 512

ISBN-13: 9780824704551

DOWNLOAD EBOOK →

Covering theoretical methods and computational techniques in biomolecular research, this book focuses on approaches for the treatment of macromolecules, including proteins, nucleic acids, and bilayer membranes. It uses concepts in free energy calculations, conformational analysis, reaction rates, and transition pathways to calculate and interpret biomolecular properties gleaned from computer-generated membrane simulations. It also demonstrates comparative protein structure modeling, outlines computer-aided drug design, discusses Bayesian statistics in molecular and structural biology, and examines the RISM-SCF/MCSCF approach to chemical processes in solution.

An Introduction to Computational Biochemistry

An Introduction to Computational Biochemistry PDF

Author: C. Stan Tsai

Publisher: John Wiley & Sons

Published: 2003-03-31

Total Pages: 381

ISBN-13: 0471461091

DOWNLOAD EBOOK →

This comprehensive text offers a solid introduction to the biochemical principles and skills required for any researcher applying computational tools to practical problems in biochemistry. Each chapter includes an introduction to the topic, a review of the biological concepts involved, a discussion of the programming and applications used, key references, and problem sets and answers. Providing detailed coverage of biochemical structures, enzyme reactions, metabolic simulation, genomic and proteomic analyses, and molecular modeling, this is the perfect resource for students and researchers in biochemistry, bioinformatics, bioengineering and computational science.

Computational Biophysics of Membrane Proteins

Computational Biophysics of Membrane Proteins PDF

Author: Carmen Domene

Publisher: Royal Society of Chemistry

Published: 2016-11-30

Total Pages: 264

ISBN-13: 1782626697

DOWNLOAD EBOOK →

Exploring current themes in modern computational and membrane protein biophysics, this book presents a comprehensive account of the fundamental principles underlying different methods and techniques used to describe the intriguing mechanisms by which membrane proteins function. The book discusses the experimental approaches employed to study these proteins, with chapters reviewing recent crucial structural advances that have allowed computational biophysicists to discern how these molecular machines work. The book then explores what computational methods are available to researchers and what these have taught us about three key families of membrane proteins: ion channels, transporters and receptors. The book is ideal for researchers in computational chemistry and computational biophysics.

Computational Modeling of Biological Systems

Computational Modeling of Biological Systems PDF

Author: Nikolay V Dokholyan

Publisher: Springer Science & Business Media

Published: 2012-02-12

Total Pages: 360

ISBN-13: 1461421454

DOWNLOAD EBOOK →

Computational modeling is emerging as a powerful new approach to study and manipulate biological systems. Multiple methods have been developed to model, visualize, and rationally alter systems at various length scales, starting from molecular modeling and design at atomic resolution to cellular pathways modeling and analysis. Higher time and length scale processes, such as molecular evolution, have also greatly benefited from new breeds of computational approaches. This book provides an overview of the established computational methods used for modeling biologically and medically relevant systems.

Algorithms in Structural Molecular Biology

Algorithms in Structural Molecular Biology PDF

Author: Bruce R. Donald

Publisher: MIT Press

Published: 2023-08-15

Total Pages: 497

ISBN-13: 0262548798

DOWNLOAD EBOOK →

An overview of algorithms important to computational structural biology that addresses such topics as NMR and design and analysis of proteins.Using the tools of information technology to understand the molecular machinery of the cell offers both challenges and opportunities to computational scientists. Over the past decade, novel algorithms have been developed both for analyzing biological data and for synthetic biology problems such as protein engineering. This book explains the algorithmic foundations and computational approaches underlying areas of structural biology including NMR (nuclear magnetic resonance); X-ray crystallography; and the design and analysis of proteins, peptides, and small molecules. Each chapter offers a concise overview of important concepts, focusing on a key topic in the field. Four chapters offer a short course in algorithmic and computational issues related to NMR structural biology, giving the reader a useful toolkit with which to approach the fascinating yet thorny computational problems in this area. A recurrent theme is understanding the interplay between biophysical experiments and computational algorithms. The text emphasizes the mathematical foundations of structural biology while maintaining a balance between algorithms and a nuanced understanding of experimental data. Three emerging areas, particularly fertile ground for research students, are highlighted: NMR methodology, design of proteins and other molecules, and the modeling of protein flexibility. The next generation of computational structural biologists will need training in geometric algorithms, provably good approximation algorithms, scientific computation, and an array of techniques for handling noise and uncertainty in combinatorial geometry and computational biophysics. This book is an essential guide for young scientists on their way to research success in this exciting field.

The Physical Basis of Biochemistry

The Physical Basis of Biochemistry PDF

Author: Peter R. Bergethon

Publisher: Springer Science & Business Media

Published: 2010-09-10

Total Pages: 950

ISBN-13: 1441963243

DOWNLOAD EBOOK →

Biological chemistry has changed since the completion of the human genome project. There is a renewed interest and market for individuals trained in biophysical chemistry and molecular biophysics. The Physical Basis of Biochemistry, Second Edition, emphasizes the interdisciplinary nature of biophysical chemistry by incorporating the quantitative perspective of the physical sciences without sacrificing the complexity and diversity of the biological systems, applies physical and chemical principles to the understanding of the biology of cells and explores the explosive developments in the area of genomics, and in turn, proteomics, bioinformatics, and computational and visualization technologies that have occurred in the past seven years. The book features problem sets and examples, clear illustrations, and extensive appendixes that provide additional information on related topics in mathematics, physics and chemistry.

Cellular Biophysics and Modeling

Cellular Biophysics and Modeling PDF

Author: Greg Conradi Smith

Publisher: Cambridge University Press

Published: 2019-03-14

Total Pages: 395

ISBN-13: 1107005361

DOWNLOAD EBOOK →

What every neuroscientist should know about the mathematical modeling of excitable cells, presented at an introductory level.

Biomolecular Kinetics

Biomolecular Kinetics PDF

Author: Clive R. Bagshaw

Publisher: CRC Press

Published: 2017-10-04

Total Pages: 883

ISBN-13: 1351646664

DOWNLOAD EBOOK →

"a gem of a textbook which manages to produce a genuinely fresh, concise yet comprehensive guide" –Mark Leake, University of York "destined to become a standard reference.... Not just a ‘how to’ handbook but also an accessible primer in the essentials of kinetic theory and practice." –Michael Geeves, University of Kent "covers the entire spectrum of approaches, from the traditional steady state methods to a thorough account of transient kinetics and rapid reaction techniques, and then on to the new single molecule techniques" –Stephen Halford, University of Bristol This illustrated treatment explains the methods used for measuring how much a reaction gets speeded up, as well as the framework for solving problems such as ligand binding and macromolecular folding, using the step-by-step approach of numerical integration. It is a thoroughly modern text, reflecting the recent ability to observe reactions at the single-molecule level, as well as advances in microfluidics which have given rise to femtoscale studies. Kinetics is more important now than ever, and this book is a vibrant and approachable entry for anyone who wants to understand mechanism using transient or single molecule kinetics without getting bogged down in advanced mathematics. Clive R. Bagshaw is Emeritus Professor at the University of Leicester, U.K., and Research Associate at the University of California at Santa Cruz, U.S.A.