Computation of Biomolecular Structures

Computation of Biomolecular Structures PDF

Author: Dikeos M. Soumpasis

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 250

ISBN-13: 3642777988

DOWNLOAD EBOOK →

Computational techniques have become an indispensable part of Molecular Biology, Biochemistry, and Molecular Design. In conjunction with refined experimental methods and powerful hardware, they enable us to analyze and visualize biomolecular structures, simulate their motions and to a variable degree understand their physicochemical properties and function. In addition, they provide essentially the only way to analyze and correlate the astronomical amounts of experimental sequence and structural data accumulating in international databases. We have good reasons to believe that further advances in this area will eventually enable us to predict with sufficient accuracy many structural and functional properties of fairly large biomolecules, given their sequence and specified environmental conditions. However, it is also important to realize that in achieving this goal, we encounter several serious problems of conceptual and methodological nature, the solution of which requires new approaches and algorithms. For example, we need better force fields, more efficient optimization routines, an adequate description of electrostatics and hydration, reliable methods to compute free energies, and ways to extent the length of molecular dynamics simulations by several orders of magnitude.

Computation of Biomolecular Structures

Computation of Biomolecular Structures PDF

Author: Dikeos M. Soumpasis

Publisher: Springer

Published: 1992-12-14

Total Pages: 223

ISBN-13: 9783540559511

DOWNLOAD EBOOK →

Computational techniques have become an indispensable part of Molecular Biology, Biochemistry, and Molecular Design. In conjunction with refined experimental methods and powerful hardware, they enable us to analyze and visualize biomolecular structures, simulate their motions and to a variable degree understand their physicochemical properties and function. In addition, they provide essentially the only way to analyze and correlate the astronomical amounts of experimental sequence and structural data accumulating in international databases. We have good reasons to believe that further advances in this area will eventually enable us to predict with sufficient accuracy many structural and functional properties of fairly large biomolecules, given their sequence and specified environmental conditions. However, it is also important to realize that in achieving this goal, we encounter several serious problems of conceptual and methodological nature, the solution of which requires new approaches and algorithms. For example, we need better force fields, more efficient optimization routines, an adequate description of electrostatics and hydration, reliable methods to compute free energies, and ways to extent the length of molecular dynamics simulations by several orders of magnitude.

Computational Methods to Study the Structure and Dynamics of Biomolecules and Biomolecular Processes

Computational Methods to Study the Structure and Dynamics of Biomolecules and Biomolecular Processes PDF

Author: Adam Liwo

Publisher: Springer

Published: 2018-12-19

Total Pages: 851

ISBN-13: 3319958437

DOWNLOAD EBOOK →

This book provides a comprehensive overview of modern computer-based techniques for analyzing the structure, properties and dynamics of biomolecules and biomolecular processes. It is organized in four main parts; the first one deals with methodology of molecular simulations; the second one with applications of molecular simulations; the third one introduces bioinformatics methods and the use of experimental information in molecular simulations; the last part reports on selected applications of molecular quantum mechanics. This second edition has been thoroughly revised and updated to include the latest progresses made in the respective field of research.

Biomolecular Structure and Dynamics

Biomolecular Structure and Dynamics PDF

Author: G. Vergoten

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 327

ISBN-13: 9401154848

DOWNLOAD EBOOK →

Biomolecular Structure and Dynamics describes recent fundamental advances in the experimental and theoretical study of molecular dynamics and stochastic dynamic simulations, X-ray crystallography and NMR of biomolecules, the structure of proteins and its prediction, time resolved Fourier transform IR spectroscopy of biomolecules, the computation of free energy, applications of vibrational CD of nucleic acids, and solid state NMR. Further presentations include recent advances in UV resonance Raman spectroscopy of biomolecules, semiempirical MO methods, empirical force fields, quantitative studies of the structure of proteins in water by Fourier transform IR, and density functional theory. Metal-ligand interactions, DFT treatment of organometallic and biological systems, and simulation vs. X-ray and far IR experiments are also discussed in some detail. The book provides a broad perspective of the current theoretical aspects and recent experimental findings in the field of biomolecular dynamics, revealing future research trends, especially in areas where theoreticians and experimentalists could fruitfully collaborate.

Computational Structural Biology

Computational Structural Biology PDF

Author: Torsten Schwede

Publisher: World Scientific

Published: 2008

Total Pages: 790

ISBN-13: 9812778780

DOWNLOAD EBOOK →

This is a comprehensive introduction to Landau-Lifshitz equations and Landau-Lifshitz-Maxwell equations, beginning with the work by Yulin Zhou and Boling Guo in the early 1980s and including most of the work done by this Chinese group led by Zhou and Guo since. The book focuses on aspects such as the existence of weak solutions in multi dimensions, existence and uniqueness of smooth solutions in one dimension, relations with harmonic map heat flows, partial regularity and long time behaviors. The book is a valuable reference book for those who are interested in partial differential equations, geometric analysis and mathematical physics. It may also be used as an advanced textbook by graduate students in these fields.

Computational Structural Biology

Computational Structural Biology PDF

Author: Manuel Claude Peitsch

Publisher: World Scientific

Published: 2008

Total Pages: 790

ISBN-13: 9812778772

DOWNLOAD EBOOK →

This work covers the impact of computational structural biology on protein structure prediction methods, macromolecular function and protein design, and key methods in drug discovery. It also addresses the computational challenges of experimental approaches in structural biology.

Computational Biochemistry and Biophysics

Computational Biochemistry and Biophysics PDF

Author: Oren M. Becker

Publisher: CRC Press

Published: 2001-02-09

Total Pages: 525

ISBN-13: 0824741404

DOWNLOAD EBOOK →

Covering theoretical methods and computational techniques in biomolecular research, this book focuses on approaches for the treatment of macromolecules, including proteins, nucleic acids, and bilayer membranes. It uses concepts in free energy calculations, conformational analysis, reaction rates, and transition pathways to calculate and interpret biomolecular properties gleaned from computer-generated membrane simulations. It also demonstrates comparative protein structure modeling, outlines computer-aided drug design, discusses Bayesian statistics in molecular and structural biology, and examines the RISM-SCF/MCSCF approach to chemical processes in solution.

Computational Geometry for the Determination of Biomolecular Structures

Computational Geometry for the Determination of Biomolecular Structures PDF

Author: Mohamed Machat

Publisher:

Published: 2017

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK →

Structural biology has allowed us expand our knowledge of living organisms. It is defined as the investigation of the structure and function of biological systems at the molecular level. Studying a biomolecule's structure offers insight into its geometry, as angles and distances between the biomolecule's atoms are measured in order to determine the biomolecular structure. The values of these geometrical parameters may be obtained from biophysical techniques, such as X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. One of the most used methods to calculate protein structures from geometric restraints is simulated annealing. This method does not guarantee an exhaustive sampling of protein conformational space, which is a shortcoming as one protein may adopt multiple functional conformations, and it is important to determine them exhaustively. In this PhD project, the efficiency of a new method - derived from operations research and computational geometry - is studied in order to answer this question: How does this method explore the conformational spaces of small proteins? This method - implemented within the iBPprot software framework - treats protein structure determination as a distance geometry problem, which the interval branch-and-prune algorithm tries to solve by the full exploration of its solutions space. The results obtained by iBPprot on a set of test proteins, with sizes ranging from 24 to 120 residues and with known structures, are analyzed here. Using short-range exact distance restraints, it was possible to rebuild the structure of all protein targets, and for many of them it was possible to exhaustively explore their conformational spaces. In practice, it is not always possible to obtain exact distance restraints from experiments. Therefore, this method was then tested with interval data restraints. In these cases, iBPprot permitted the sampling of the positions of more than 70% of the atoms constituting the protein backbone for most of the targets. Furthermore, conformations whose r.m.s. deviations closer than 6 Angstrom to the target ones were obtained during the conformational space exploration. The quality of the generated structures was satisfactory with respect to Ramachandran plots, but needs improvement because of the presence of steric clashes in some conformers. The runtime for most performed calculations was competitive with existing structure determination method...

Lecture Notes on Computational Structural Biology

Lecture Notes on Computational Structural Biology PDF

Author: Zhijun Wu

Publisher: World Scientific

Published: 2008

Total Pages: 243

ISBN-13: 9812814787

DOWNLOAD EBOOK →

1. Introduction. 1.1. Protein structure. 1.2. Structure determination. 1.3. Dynamics simulation. 1.4. The myth of protein folding -- 2. X-ray crystallography computing. 2.1. The phase problem. 2.2. Least squares solutions. 2.3. Entropy maximization. 2.4. Indirect methods -- 3. NMR structure determination. 3.1. Nuclear magnetic resonance. 3.2. Distance geometry. 3.3. Distance-based modeling. 3.4. Structural analysis -- 4. Potential energy minimization. 4.1. Potential energy function. 4.2. Local optimization. 4.3. Global optimization. 4.4. Energy transformation -- 5. Molecular dynamics simulation. 5.1. Equations of motion. 5.2. Initial-value problem. 5.3. Boundary-value problem. 5.4. Normal mode analysis -- 6. Knowledge-based protein modeling. 6.1. Sequence/structural alignment. 6.2. Fold recognition/inverse folding. 6.3. Knowledge-based structural refinement. 6.4. Structural computing and beyond

Advances in Computational Biology

Advances in Computational Biology PDF

Author: H.O. Villar

Publisher: Elsevier

Published: 1996-05-31

Total Pages: 267

ISBN-13: 9780080526119

DOWNLOAD EBOOK →

The second volume in a series which aims to focus on advances in computational biology. This volume discusses such topics as: statistical analysis of protein sequences; progress in large-scale sequence analysis; and the architecture of loops in proteins.