Comprehensive Applied Mathematical Modeling in the Natural and Engineering Sciences

Comprehensive Applied Mathematical Modeling in the Natural and Engineering Sciences PDF

Author: David J. Wollkind

Publisher: Springer

Published: 2018-05-01

Total Pages: 607

ISBN-13: 3319735187

DOWNLOAD EBOOK →

This text demonstrates the process of comprehensive applied mathematical modeling through the introduction of various case studies. The case studies are arranged in increasing order of complexity based on the mathematical methods required to analyze the models. The development of these methods is also included, providing a self-contained presentation. To reinforce and supplement the material introduced, original problem sets are offered involving case studies closely related to the ones presented. With this style, the text’s perspective, scope, and completeness of the subject matter are considered unique. Having grown out of four self-contained courses taught by the authors, this text will be of use in a two-semester sequence for advanced undergraduate and beginning graduate students, requiring rudimentary knowledge of advanced calculus and differential equations, along with a basic understanding of some simple physical and biological scientific principles.

The Nature of Mathematical Modeling

The Nature of Mathematical Modeling PDF

Author: Neil A. Gershenfeld

Publisher: Cambridge University Press

Published: 1999

Total Pages: 268

ISBN-13: 9780521570954

DOWNLOAD EBOOK →

This is a book about the nature of mathematical modeling, and about the kinds of techniques that are useful for modeling. The text is in four sections. The first covers exact and approximate analytical techniques; the second, numerical methods; the third, model inference based on observations; and the last, the special role of time in modeling. Each of the topics in the book would be the worthy subject of a dedicated text, but only by presenting the material in this way is it possible to make so much material accessible to so many people. Each chapter presents a concise summary of the core results in an area. The text is complemented by extensive worked problems.

Mathematical and Computational Modeling

Mathematical and Computational Modeling PDF

Author: Roderick Melnik

Publisher: John Wiley & Sons

Published: 2015-05-18

Total Pages: 321

ISBN-13: 1118853989

DOWNLOAD EBOOK →

Mathematical and Computational Modeling Illustrates the application of mathematical and computational modeling in a variety of disciplines With an emphasis on the interdisciplinary nature of mathematical and computational modeling, Mathematical and Computational Modeling: With Applications in the Natural and Social Sciences, Engineering, and the Arts features chapters written by well-known, international experts in these fields and presents readers with a host of state-of-theart achievements in the development of mathematical modeling and computational experiment methodology. The book is a valuable guide to the methods, ideas, and tools of applied and computational mathematics as they apply to other disciplines such as the natural and social sciences, engineering, and technology. The book also features: Rigorous mathematical procedures and applications as the driving force behind mathematical innovation and discovery Numerous examples from a wide range of disciplines to emphasize the multidisciplinary application and universality of applied mathematics and mathematical modeling Original results on both fundamental theoretical and applied developments in diverse areas of human knowledge Discussions that promote interdisciplinary interactions between mathematicians, scientists, and engineers Mathematical and Computational Modeling: With Applications in the Natural and Social Sciences, Engineering, and the Arts is an ideal resource for professionals in various areas of mathematical and statistical sciences, modeling and simulation, physics, computer science, engineering, biology and chemistry, and industrial and computational engineering. The book also serves as an excellent textbook for graduate courses in mathematical modeling, applied mathematics, numerical methods, operations research, and optimization.

Computing and Simulation for Engineers

Computing and Simulation for Engineers PDF

Author: Ziya Uddin

Publisher: CRC Press

Published: 2022-06-29

Total Pages: 251

ISBN-13: 1000599868

DOWNLOAD EBOOK →

This book presents the reader with comprehensive insight into various kinds of mathematical modeling and numerical computation for problems arising in several branches of engineering, such as mechanical engineering, computer science engineering, electrical engineering, electronics and communication engineering, and civil engineering. The book: • Discusses topics related to clean and green energy production and storage • Bridges the gap between core theory and costly industrial experiments • Covers advanced biomechanics and nanodrug delivery topics • Explores diversified applications of mathematical techniques to solve practical engineering problems The text in this book emphasizes mathematical treatment of soft computing, image and signal processing, fluid flows in various geometries, biomechanics, biological modeling, a mathematical description of the solar cell, analytical and numerical treatment of problems in fracture mechanics, and antenna design modeling. It also discusses the numerical computations of biomechanics problems and problems arising in cryptography. The text further covers optimization techniques that are useful for real-world problems. This material is primarily written for graduate students and academic researchers in a number of engineering fields, including electrical, electronics and communication, industrial, manufacturing, mechanical, computer science, and mathematics.

Mathematical Models in Natural Science and Engineering

Mathematical Models in Natural Science and Engineering PDF

Author: Juri I. Neimark

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 561

ISBN-13: 3540478787

DOWNLOAD EBOOK →

This book has come into being as a result ofthe author's lectures on mathematical modelling rendered to the students, BS and MS degree holders specializing in applied mathematics and computer science and to post-graduate students in exact sciences of the Nizhny Novgorod State University after N.!. Lobatchevsky. These lectures are adapted and presented as a single whole ab out mathematical models and modelling. This new course of lectures appeared because the contemporary Russian educational system in applied mathematics rested upon a combination of fundamental and applied mathematics training; this way of training oriented students upon solving only the exactly stated mathematical problems, and thus there was created a certain estrangement to the most essential stages and sides of real solutions for applied problems, such as thinking over and deeply piercing the essence of a specific problem and its mathematical statement. This statement embraces simplifications, adopted idealizations and creating a mathematical model, its correction and matching the results obtained against a real system. There also existed another main objective, namely to orient university graduates in their future research not only upon purely mathematical issues but also upon comprehending and widely applying mathematics as a universal language of contemporary exact science, and mathematical modelling as a powerful me ans for studying nature, engineering and human society.

Mathematical Modeling

Mathematical Modeling PDF

Author: Christof Eck

Publisher: Springer

Published: 2017-04-11

Total Pages: 509

ISBN-13: 3319551612

DOWNLOAD EBOOK →

Mathematical models are the decisive tool to explain and predict phenomena in the natural and engineering sciences. With this book readers will learn to derive mathematical models which help to understand real world phenomena. At the same time a wealth of important examples for the abstract concepts treated in the curriculum of mathematics degrees are given. An essential feature of this book is that mathematical structures are used as an ordering principle and not the fields of application. Methods from linear algebra, analysis and the theory of ordinary and partial differential equations are thoroughly introduced and applied in the modeling process. Examples of applications in the fields electrical networks, chemical reaction dynamics, population dynamics, fluid dynamics, elasticity theory and crystal growth are treated comprehensively.

Mathematical Methods for the Natural and Engineering Sciences

Mathematical Methods for the Natural and Engineering Sciences PDF

Author: Ronald E Mickens

Publisher: World Scientific Publishing Company

Published: 2016-12-29

Total Pages: 640

ISBN-13: 9813202726

DOWNLOAD EBOOK →

This second edition provides a broad range of methods and concepts required for the analysis and solution of equations which arise in the modeling of phenomena in the natural, engineering, and applied mathematical sciences. It may be used productively by both undergraduate and graduate students, as well as others who wish to learn, understand, and apply these techniques. Detailed discussions are also given for several topics that are not usually included in standard textbooks at this level of presentation: qualitative methods for differential equations, dimensionalization and scaling, elements of asymptotics, difference equations and several perturbation procedures. Further, this second edition includes several new topics covering functional equations, the Lambert–W function, nonstandard sets of periodic functions, and the method of dominant balance. Each chapter contains a large number of worked examples and provides references to the appropriate books and literature. Request Inspection Copy

Mathematical Modeling in Science and Engineering

Mathematical Modeling in Science and Engineering PDF

Author: Ismael Herrera

Publisher: John Wiley & Sons

Published: 2012-03-19

Total Pages: 259

ISBN-13: 1118207203

DOWNLOAD EBOOK →

A powerful, unified approach to mathematical and computational modeling in science and engineering Mathematical and computational modeling makes it possible to predict the behavior of a broad range of systems across a broad range of disciplines. This text guides students and professionals through the axiomatic approach, a powerful method that will enable them to easily master the principle types of mathematical and computational models used in engineering and science. Readers will discover that this axiomatic approach not only enables them to systematically construct effective models, it also enables them to apply these models to any macroscopic physical system. Mathematical Modeling in Science and Engineering focuses on models in which the processes to be modeled are expressed as systems of partial differential equations. It begins with an introductory discussion of the axiomatic formulation of basic models, setting the foundation for further topics such as: Mechanics of classical and non-classical continuous systems Solute transport by a free fluid Flow of a fluid in a porous medium Multiphase systems Enhanced oil recovery Fluid mechanics Throughout the text, diagrams are provided to help readers visualize and better understand complex mathematical concepts. A set of exercises at the end of each chapter enables readers to put their new modeling skills into practice. There is also a bibliography in each chapter to facilitate further investigation of individual topics. Mathematical Modeling in Science and Engineering is ideal for both students and professionals across the many disciplines of science and engineering that depend on mathematical and computational modeling to predict and understand complex systems.

Applied Mathematical Modeling

Applied Mathematical Modeling PDF

Author: Douglas R. Shier

Publisher: CRC Press

Published: 1999-11-11

Total Pages: 472

ISBN-13: 9781420050042

DOWNLOAD EBOOK →

The practice of modeling is best learned by those armed with fundamental methodologies and exposed to a wide variety of modeling experience. Ideally, this experience could be obtained by working on actual modeling problems. But time constraints often make this difficult. Applied Mathematical Modeling provides a collection of models illustrating the power and richness of the mathematical sciences in supplying insight into the operation of important real-world systems. It fills a gap within modeling texts, focusing on applications across a broad range of disciplines. The first part of the book discusses the general components of the modeling process and highlights the potential of modeling in practice. These chapters discuss the general components of the modeling process, and the evolutionary nature of successful model building. The second part provides a rich compendium of case studies, each one complete with examples, exercises, and projects. In keeping with the multidimensional nature of the models presented, the chapters in the second part are listed in alphabetical order by the contributor's last name. Unlike most mathematical books, in which you must master the concepts of early chapters to prepare for subsequent material, you may start with any chapter. Begin with cryptology, if that catches your fancy, or go directly to bursty traffic if that is your cup of tea. Applied Mathematical Modeling serves as a handbook of in-depth case studies that span the mathematical sciences, building upon a modest mathematical background. Readers in other applied disciplines will benefit from seeing how selected mathematical modeling philosophies and techniques can be brought to bear on problems in their disciplines. The models address actual situations studied in chemistry, physics, demography, economics, civil engineering, environmental engineering, industrial engineering, telecommunications, and other areas.

Mathematical and Computational Approaches in Advancing Modern Science and Engineering

Mathematical and Computational Approaches in Advancing Modern Science and Engineering PDF

Author: Jacques Bélair

Publisher: Springer

Published: 2016-08-10

Total Pages: 806

ISBN-13: 3319303791

DOWNLOAD EBOOK →

Focusing on five main groups of interdisciplinary problems, this book covers a wide range of topics in mathematical modeling, computational science and applied mathematics. It presents a wealth of new results in the development of modeling theories and methods, advancing diverse areas of applications and promoting interdisciplinary interactions between mathematicians, scientists, engineers and representatives from other disciplines. The book offers a valuable source of methods, ideas, and tools developed for a variety of disciplines, including the natural and social sciences, medicine, engineering, and technology. Original results are presented on both the fundamental and applied level, accompanied by an ample number of real-world problems and examples emphasizing the interdisciplinary nature and universality of mathematical modeling, and providing an excellent outline of today’s challenges. Mathematical modeling, with applied and computational methods and tools, plays a fundamental role in modern science and engineering. It provides a primary and ubiquitous tool in the context making new discoveries, as well as in the development of new theories and techniques for solving key problems arising in scientific and engineering applications. The contributions, which are the product of two highly successful meetings held jointly in Waterloo, Ontario, Canada on the main campus of Wilfrid Laurier University in June 2015, i.e. the International Conference on Applied Mathematics, Modeling and Computational Science, and the Annual Meeting of the Canadian Applied and Industrial Mathematics (CAIMS), make the book a valuable resource for any reader interested in a broader overview of the methods, ideas and tools involved in mathematical and computational approaches developed for other disciplines, including the natural and social sciences, engineering and technology.