Optical Imaging and Spectroscopy

Optical Imaging and Spectroscopy PDF

Author: David J. Brady

Publisher: John Wiley & Sons

Published: 2009-04-27

Total Pages: 530

ISBN-13: 0470443723

DOWNLOAD EBOOK →

An essential reference for optical sensor system design This is the first text to present an integrated view of the optical and mathematical analysis tools necessary to understand computational optical system design. It presents the foundations of computational optical sensor design with a focus entirely on digital imaging and spectroscopy. It systematically covers: Coded aperture and tomographic imaging Sampling and transformations in optical systems, including wavelets and generalized sampling techniques essential to digital system analysis Geometric, wave, and statistical models of optical fields The basic function of modern optical detectors and focal plane arrays Practical strategies for coherence measurement in imaging system design The sampling theory of digital imaging and spectroscopy for both conventional and emerging compressive and generalized measurement strategies Measurement code design Linear and nonlinear signal estimation The book concludes with a review of numerous design strategies in spectroscopy and imaging and clearly outlines the benefits and limits of each approach, including coded aperture and imaging spectroscopy, resonant and filter-based systems, and integrated design strategies to improve image resolution, depth of field, and field of view. Optical Imaging and Spectroscopy is an indispensable textbook for advanced undergraduate and graduate courses in optical sensor design. In addition to its direct applicability to optical system design, unique perspectives on computational sensor design presented in the text will be of interest for sensor designers in radio and millimeter wave, X-ray, and acoustic systems.

Advanced Optical Imaging Theory

Advanced Optical Imaging Theory PDF

Author: Min Gu

Publisher: Springer

Published: 2013-06-05

Total Pages: 223

ISBN-13: 354048471X

DOWNLOAD EBOOK →

Optical microscopy and associated technologies have advanced rapidly along with laser technology. These techniques have stimulated further development of the optical imaging theory, including 3-dimensional microscopy imaging theory, the theory of imaging with ultrashort pulsed beam illumination and the aberration theory for high numerical-aperture objectives. This book introduces these new theories in modern optical microscopy, providing comparisons with classical imaging as appropriate.

Fourier Ptychographic Imaging

Fourier Ptychographic Imaging PDF

Author: Guoan Zheng

Publisher: Morgan & Claypool Publishers

Published: 2016-06-30

Total Pages: 113

ISBN-13: 1681742748

DOWNLOAD EBOOK →

This book demonstrates the concept of Fourier ptychography, a new imaging technique that bypasses the resolution limit of the employed optics. In particular, it transforms the general challenge of high-throughput, high-resolution imaging from one that is coupled to the physical limitations of the optics to one that is solvable through computation. Demonstrated in a tutorial form and providing many MATLAB® simulation examples for the reader, it also discusses the experimental implementation and recent developments of Fourier ptychography. This book will be of interest to researchers and engineers learning simulation techniques for Fourier optics and the Fourier ptychography concept.

Fourier Optics and Computational Imaging

Fourier Optics and Computational Imaging PDF

Author: Kedar Khare

Publisher: John Wiley & Sons

Published: 2015-09-21

Total Pages: 312

ISBN-13: 1118900340

DOWNLOAD EBOOK →

This book covers both the mathematics of inverse problems and optical systems design, and includes a review of the mathematical methods and Fourier optics. The first part of the book deals with the mathematical tools in detail with minimal assumption about prior knowledge on the part of the reader. The second part of the book discusses concepts in optics, particularly propagation of optical waves and coherence properties of optical fields that form the basis of the computational models used for image recovery. The third part provides a discussion of specific imaging systems that illustrate the power of the hybrid computational imaging model in enhancing imaging performance. A number of exercises are provided for readers to develop further understanding of computational imaging. While the focus of the book is largely on optical imaging systems, the key concepts are discussed in a fairly general manner so as to provide useful background for understanding the mechanisms of a diverse range of imaging modalities.

Contemporary Optical Image Processing with MATLAB

Contemporary Optical Image Processing with MATLAB PDF

Author: T.-C. Poon

Publisher: Elsevier

Published: 2001-04-18

Total Pages: 270

ISBN-13: 9780080529820

DOWNLOAD EBOOK →

This book serves two purposes: first to introduce readers to the concepts of geometrical optics, physical optics and techniques of optical imaging and image processing, and secondly to provide them with experience in modeling the theory and applications using the commonly used software tool MATLAB®. A comprehensively revised version of the authors' earlier book Principles of Applied Optics, Contemporary Optical Image Processing with MATLAB brings out the systems aspect of optics. This includes ray optics, Fourier Optics, Gaussian beam propagation, the split-step beam propagation method, holography and complex spatial filtering, ray theory of holograms, optical scanning holography, acousto-optic image processing, edge enhancement and correlation using photorefractive materials, holographic phase distortion correction, to name a few. MATLAB examples are given throughout the text. MATLAB is emphasized since it is now a widely accepted software tool very routinely used in signal processing. A sizeable portion of this book is based on the authors' own in-class presentations, as well as research in the area. Instructive problems and MATLAB assignments are included at the end of each Chapter to enhance even further the value of this book to its readers. MATLAB is a registered trademark of The MathWorks, Inc.

Optical Compressive Imaging

Optical Compressive Imaging PDF

Author: Adrian Stern

Publisher: CRC Press

Published: 2016-11-17

Total Pages: 316

ISBN-13: 1315354276

DOWNLOAD EBOOK →

This dedicated overview of optical compressive imaging addresses implementation aspects of the revolutionary theory of compressive sensing (CS) in the field of optical imaging and sensing. It overviews the technological opportunities and challenges involved in optical design and implementation, from basic theory to optical architectures and systems for compressive imaging in various spectral regimes, spectral and hyperspectral imaging, polarimetric sensing, three-dimensional imaging, super-resolution imaging, lens-free, on-chip microscopy, and phase sensing and retrieval. The reader will gain a complete introduction to theory, experiment, and practical use for reducing hardware, shortening image scanning time, and improving image resolution as well as other performance parameters. Optics practitioners and optical system designers, electrical and optical engineers, mathematicians, and signal processing professionals will all find the book a unique trove of information and practical guidance. Delivers the first book on compressed sensing dealing with system development for a wide variety of optical imaging and sensing applications. Covers the fundamentals of CS theory, including noise and algorithms, as well as basic design approaches for data acquisition in optics. Addresses the challenges of implementing compressed sensing theory in the context of different optical imaging designs, from 3D imaging to tomography and microscopy. Provides an essential resource for the design of new and improved devices with improved image quality and shorter acquisition times. Adrian Stern, PhD, is associate professor and head of the Electro-Optical Engineering Unit at Ben-Gurion University of the Negev, Israel. He is an elected Fellow of SPIE.

Biomedical Optical Imaging

Biomedical Optical Imaging PDF

Author: James G. Fujimoto

Publisher: Oxford University Press

Published: 2009-04-22

Total Pages: 440

ISBN-13: 9780199722297

DOWNLOAD EBOOK →

Biomedical optical imaging is a rapidly emerging research area with widespread fundamental research and clinical applications. This book gives an overview of biomedical optical imaging with contributions from leading international research groups who have pioneered many of these techniques and applications. A unique research field spanning the microscopic to the macroscopic, biomedical optical imaging allows both structural and functional imaging. Techniques such as confocal and multiphoton microscopy provide cellular level resolution imaging in biological systems. The integration of this technology with exogenous chromophores can selectively enhance contrast for molecular targets as well as supply functional information on processes such as nerve transduction. Novel techniques integrate microscopy with state-of-the-art optics technology, and these include spectral imaging, two photon fluorescence correlation, nonlinear nanoscopy; optical coherence tomography techniques allow functional, dynamic, nanoscale, and cross-sectional visualization. Moving to the macroscopic scale, spectroscopic assessment and imaging methods such as fluorescence and light scattering can provide diagnostics of tissue pathology including neoplastic changes. Techniques using light diffusion and photon migration are a means to explore processes which occur deep inside biological tissues and organs. The integration of these techniques with exogenous probes enables molecular specific sensitivity.