Co-Synthesis of Hardware and Software for Digital Embedded Systems

Co-Synthesis of Hardware and Software for Digital Embedded Systems PDF

Author: Rajesh Kumar Gupta

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 275

ISBN-13: 1461522870

DOWNLOAD EBOOK →

Co-Synthesis of Hardware and Software for Digital Embedded Systems, with a Foreword written by Giovanni De Micheli, presents techniques that are useful in building complex embedded systems. These techniques provide a competitive advantage over purely hardware or software implementations of time-constrained embedded systems. Recent advances in chip-level synthesis have made it possible to synthesize application-specific circuits under strict timing constraints. This work advances the state of the art by formulating the problem of system synthesis using both application-specific as well as reprogrammable components, such as off-the-shelf processors. Timing constraints are used to determine what part of the system functionality must be delegated to dedicated application-specific hardware while the rest is delegated to software that runs on the processor. This co-synthesis of hardware and software from behavioral specifications makes it possible to realize real-time embedded systems using off-the-shelf parts and a relatively small amount of application-specific circuitry that can be mapped to semi-custom VLSI such as gate arrays. The ability to perform detailed analysis of timing performance provides the opportunity of improving the system definition by creating better phototypes. Co-Synthesis of Hardware and Software for Digital Embedded Systems is of interest to CAD researchers and developers who want to branch off into the expanding field of hardware/software co-design, as well as to digital system designers who are interested in the present power and limitations of CAD techniques and their likely evolution.

Hardware-Software Co-Synthesis of Distributed Embedded Systems

Hardware-Software Co-Synthesis of Distributed Embedded Systems PDF

Author: Ti-Yen Yen

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 158

ISBN-13: 1475753888

DOWNLOAD EBOOK →

Embedded computer systems use both off-the-shelf microprocessors and application-specific integrated circuits (ASICs) to implement specialized system functions. Examples include the electronic systems inside laser printers, cellular phones, microwave ovens, and an automobile anti-lock brake controller. Embedded computing is unique because it is a co-design problem - the hardware engine and application software architecture must be designed simultaneously. Hardware-Software Co-Synthesis of Distributed Embedded Systems proposes new techniques such as fixed-point iterations, phase adjustment, and separation analysis to efficiently estimate tight bounds on the delay required for a set of multi-rate processes preemptively scheduled on a real-time reactive distributed system. Based on the delay bounds, a gradient-search co-synthesis algorithm with new techniques such as sensitivity analysis, priority prediction, and idle- processing elements elimination are developed to select the number and types of processing elements in a distributed engine, and determine the allocation and scheduling of processes to processing elements. New communication modeling is also presented to analyze communication delay under interaction of computation and communication, allocate interprocessor communication links, and schedule communication. Hardware-Software Co-Synthesis of Distributed Embedded Systems is the first book to describe techniques for the design of distributed embedded systems, which have arbitrary hardware and software topologies. The book will be of interest to: academic researchers for personal libraries and advanced-topics courses in co-design as well as industrial designers who are building high-performance, real-time embedded systems with multiple processors.

Hardware/Software Co-Design for Data Flow Dominated Embedded Systems

Hardware/Software Co-Design for Data Flow Dominated Embedded Systems PDF

Author: Ralf Niemann

Publisher: Springer Science & Business Media

Published: 1998-10-31

Total Pages: 252

ISBN-13: 9780792382997

DOWNLOAD EBOOK →

Introduces different tasks of hardware/software co-design, including system specification, hardware/software partitioning, co-synthesis, and co-simulation. Summarizes and classifies co-design tools and methods for these tasks, and presents the co-design tool COOL, useful for solving co-design tasks for the class of data-flow dominated embedded systems. Primary emphasis is on hardware/software partitioning and the co-synthesis phase and their coupling. A mathematical formulation of the hardware/software partitioning problem is given, and several novel approaches are presented and compared for solving the partitioning problem. Annotation copyrighted by Book News, Inc., Portland, OR

Readings in Hardware/Software Co-Design

Readings in Hardware/Software Co-Design PDF

Author: Giovanni De Micheli

Publisher: Morgan Kaufmann

Published: 2002

Total Pages: 714

ISBN-13: 1558607021

DOWNLOAD EBOOK →

This title serves as an introduction ans reference for the field, with the papers that have shaped the hardware/software co-design since its inception in the early 90s.

Hardware/Software Co-Design

Hardware/Software Co-Design PDF

Author: Jørgen Staunstrup

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 406

ISBN-13: 147572649X

DOWNLOAD EBOOK →

Introduction to Hardware-Software Co-Design presents a number of issues of fundamental importance for the design of integrated hardware software products such as embedded, communication, and multimedia systems. This book is a comprehensive introduction to the fundamentals of hardware/software co-design. Co-design is still a new field but one which has substantially matured over the past few years. This book, written by leading international experts, covers all the major topics including: fundamental issues in co-design; hardware/software co-synthesis algorithms; prototyping and emulation; target architectures; compiler techniques; specification and verification; system-level specification. Special chapters describe in detail several leading-edge co-design systems including Cosyma, LYCOS, and Cosmos. Introduction to Hardware-Software Co-Design contains sufficient material for use by teachers and students in an advanced course of hardware/software co-design. It also contains extensive explanation of the fundamental concepts of the subject and the necessary background to bring practitioners up-to-date on this increasingly important topic.

Hardware/Software Co-Design

Hardware/Software Co-Design PDF

Author: Giovanni DeMicheli

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 473

ISBN-13: 9400901879

DOWNLOAD EBOOK →

Concurrent design, or co-design of hardware and software is extremely important for meeting design goals, such as high performance, that are the key to commercial competitiveness. Hardware/Software Co-Design covers many aspects of the subject, including methods and examples for designing: (1) general purpose and embedded computing systems based on instruction set processors; (2) telecommunication systems using general purpose digital signal processors as well as application specific instruction set processors; (3) embedded control systems and applications to automotive electronics. The book also surveys the areas of emulation and prototyping systems with field programmable gate array technologies, hardware/software synthesis and verification, and industrial design trends. Most contributions emphasize the design methodology, the requirements and state of the art of computer aided co-design tools, together with current design examples.

Embedded Systems – A Hardware-Software Co-Design Approach

Embedded Systems – A Hardware-Software Co-Design Approach PDF

Author: Bashir I Morshed

Publisher: Springer Nature

Published: 2021-04-19

Total Pages: 263

ISBN-13: 3030668088

DOWNLOAD EBOOK →

This textbook introduces the concept of embedded systems with exercises using Arduino Uno. It is intended for advanced undergraduate and graduate students in computer science, computer engineering, and electrical engineering programs. It contains a balanced discussion on both hardware and software related to embedded systems, with a focus on co-design aspects. Embedded systems have applications in Internet-of-Things (IoT), wearables, self-driving cars, smart devices, cyberphysical systems, drones, and robotics. The hardware chapter discusses various microcontrollers (including popular microcontroller hardware examples), sensors, amplifiers, filters, actuators, wired and wireless communication topologies, schematic and PCB designs, and much more. The software chapter describes OS-less programming, bitmath, polling, interrupt, timer, sleep modes, direct memory access, shared memory, mutex, and smart algorithms, with lots of C-code examples for Arduino Uno. Other topics discussed are prototyping, testing, verification, reliability, optimization, and regulations. Appropriate for courses on embedded systems, microcontrollers, and instrumentation, this textbook teaches budding embedded system programmers practical skills with fun projects to prepare them for industry products. Introduces embedded systems for wearables, Internet-of-Things (IoT), robotics, and other smart devices; Offers a balanced focus on both hardware and software co-design of embedded systems; Includes exercises, tutorials, and assignments.

Hardware/Software Co-Design and Co-Verification

Hardware/Software Co-Design and Co-Verification PDF

Author: Jean-Michel Bergé

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 178

ISBN-13: 1475726295

DOWNLOAD EBOOK →

Co-Design is the set of emerging techniques which allows for the simultaneous design of Hardware and Software. In many cases where the application is very demanding in terms of various performances (time, surface, power consumption), trade-offs between dedicated hardware and dedicated software are becoming increasingly difficult to decide upon in the early stages of a design. Verification techniques - such as simulation or proof techniques - that have proven necessary in the hardware design must be dramatically adapted to the simultaneous verification of Software and Hardware. Describing the latest tools available for both Co-Design and Co-Verification of systems, Hardware/Software Co-Design and Co-Verification offers a complete look at this evolving set of procedures for CAD environments. The book considers all trade-offs that have to be made when co-designing a system. Several models are presented for determining the optimum solution to any co-design problem, including partitioning, architecture synthesis and code generation. When deciding on trade-offs, one of the main factors to be considered is the flow of communication, especially to and from the outside world. This involves the modeling of communication protocols. An approach to the synthesis of interface circuits in the context of co-design is presented. Other chapters present a co-design oriented flexible component data-base and retrieval methods; a case study of an ethernet bridge, designed using LOTOS and co-design methodologies and finally a programmable user interface based on monitors. Hardware/Software Co-Design and Co-Verification will help designers and researchers to understand these latest techniques in system design and as such will be of interest to all involved in embedded system design.

Hardware-Software Co-Design of Embedded Systems

Hardware-Software Co-Design of Embedded Systems PDF

Author: F. Balarin

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 311

ISBN-13: 1461561272

DOWNLOAD EBOOK →

Embedded systems are informally defined as a collection of programmable parts surrounded by ASICs and other standard components, that interact continuously with an environment through sensors and actuators. The programmable parts include micro-controllers and Digital Signal Processors (DSPs). Embedded systems are often used in life-critical situations, where reliability and safety are more important criteria than performance. Today, embedded systems are designed with an ad hoc approach that is heavily based on earlier experience with similar products and on manual design. Use of higher-level languages such as C helps structure the design somewhat, but with increasing complexity it is not sufficient. Formal verification and automatic synthesis of implementations are the surest ways to guarantee safety. Thus, the POLIS system which is a co-design environment for embedded systems is based on a formal model of computation. POLIS was initiated in 1988 as a research project at the University of California at Berkeley and, over the years, grew into a full design methodology with a software system supporting it. Hardware-Software Co-Design of Embedded Systems: The POLIS Approach is intended to give a complete overview of the POLIS system including its formal and algorithmic aspects. Hardware-Software Co-Design of Embedded Systems: The POLIS Approach will be of interest to embedded system designers (automotive electronics, consumer electronics and telecommunications), micro-controller designers, CAD developers and students.