Classical Covariant Fields

Classical Covariant Fields PDF

Author: Mark Burgess

Publisher: Cambridge University Press

Published: 2002-04-04

Total Pages: 555

ISBN-13: 1139432974

DOWNLOAD EBOOK →

This 2002 book discusses the classical foundations of field theory, using the language of variational methods and covariance, and relating the subject to quantum field theory. Ideal as a supplementary text for graduate courses on elementary field theory, group theory and dynamical systems. Also a valuable reference for researchers.

Geometry of Classical Fields

Geometry of Classical Fields PDF

Author: Ernst Binz

Publisher: Courier Corporation

Published: 2011-11-30

Total Pages: 474

ISBN-13: 0486150445

DOWNLOAD EBOOK →

A canonical quantization approach to classical field theory, this text is suitable for mathematicians interested in theoretical physics as well as to theoretical physicists who use differential geometric methods in their modelling. Introduces differential geometry, the theory of Lie groups, and progresses to discuss the systematic development of a covariant Hamiltonian formulation of field theory. 1988 edition.

Classical Covariant Fields

Classical Covariant Fields PDF

Author: Mark Burgess

Publisher: Cambridge University Press

Published: 2023-01-31

Total Pages: 553

ISBN-13: 100928990X

DOWNLOAD EBOOK →

This 2002 book is for graduate students and researchers working on field theory, group theory and dynamical systems.

Classical Theory of Gauge Fields

Classical Theory of Gauge Fields PDF

Author: Valery Rubakov

Publisher: Princeton University Press

Published: 2009-02-09

Total Pages: 456

ISBN-13: 1400825091

DOWNLOAD EBOOK →

Based on a highly regarded lecture course at Moscow State University, this is a clear and systematic introduction to gauge field theory. It is unique in providing the means to master gauge field theory prior to the advanced study of quantum mechanics. Though gauge field theory is typically included in courses on quantum field theory, many of its ideas and results can be understood at the classical or semi-classical level. Accordingly, this book is organized so that its early chapters require no special knowledge of quantum mechanics. Aspects of gauge field theory relying on quantum mechanics are introduced only later and in a graduated fashion--making the text ideal for students studying gauge field theory and quantum mechanics simultaneously. The book begins with the basic concepts on which gauge field theory is built. It introduces gauge-invariant Lagrangians and describes the spectra of linear perturbations, including perturbations above nontrivial ground states. The second part focuses on the construction and interpretation of classical solutions that exist entirely due to the nonlinearity of field equations: solitons, bounces, instantons, and sphalerons. The third section considers some of the interesting effects that appear due to interactions of fermions with topological scalar and gauge fields. Mathematical digressions and numerous problems are included throughout. An appendix sketches the role of instantons as saddle points of Euclidean functional integral and related topics. Perfectly suited as an advanced undergraduate or beginning graduate text, this book is an excellent starting point for anyone seeking to understand gauge fields.

Advanced Classical Field Theory

Advanced Classical Field Theory PDF

Author: G. Giachetta

Publisher: World Scientific

Published: 2009

Total Pages: 393

ISBN-13: 9812838961

DOWNLOAD EBOOK →

Contemporary quantum field theory is mainly developed as quantization of classical fields. Therefore, classical field theory and its BRST extension is the necessary step towards quantum field theory. This book aims to provide a complete mathematical foundation of Lagrangian classical field theory and its BRST extension for the purpose of quantization. Based on the standard geometric formulation of theory of nonlinear differential operators, Lagrangian field theory is treated in a very general setting. Reducible degenerate Lagrangian theories of even and odd fields on an arbitrary smooth manifold are considered. The second Noether theorems generalized to these theories and formulated in the homology terms provide the strict mathematical formulation of BRST extended classical field theory. The most physically relevant field theories OCo gauge theory on principal bundles, gravitation theory on natural bundles, theory of spinor fields and topological field theory OCo are presented in a complete way. This book is designed for theoreticians and mathematical physicists specializing in field theory. The authors have tried throughout to provide the necessary mathematical background, thus making the exposition self-contained.

Electrodynamics and Classical Theory of Fields and Particles

Electrodynamics and Classical Theory of Fields and Particles PDF

Author: A. O. Barut

Publisher: Courier Corporation

Published: 2012-04-30

Total Pages: 256

ISBN-13: 0486158713

DOWNLOAD EBOOK →

Comprehensive graduate-level text by a distinguished theoretical physicist reveals the classical underpinnings of modern quantum field theory. Topics include space-time, Lorentz transformations, conservation laws, equations of motion, Green’s functions, and more. 1964 edition.

From Classical to Quantum Fields

From Classical to Quantum Fields PDF

Author: Laurent Baulieu

Publisher: Oxford University Press

Published: 2017

Total Pages: 951

ISBN-13: 0198788398

DOWNLOAD EBOOK →

Quantum Field Theory has become the universal language of most modern theoretical physics. This introductory textbook shows how this beautiful theory offers the correct mathematical framework to describe and understand the fundamental interactions of elementary particles. The book begins with a brief reminder of basic classical field theories, electrodynamics and general relativity, as well as their symmetry properties, and proceeds with the principles of quantisation following Feynman's path integral approach. Special care is used at every step to illustrate the correct mathematical formulation of the underlying assumptions. Gauge theories and the problems encountered in their quantisation are discussed in detail. The last chapters contain a full description of the Standard Model of particle physics and the attempts to go beyond it, such as grand unified theories and supersymmetry. Written for advanced undergraduate and beginning graduate students in physics and mathematics, the book could also serve as a reference for active researchers in the field.

Covariant Physics

Covariant Physics PDF

Author: Moataz Emam

Publisher: Oxford University Press, USA

Published: 2021-02-21

Total Pages: 403

ISBN-13: 0198864892

DOWNLOAD EBOOK →

A textbook for 2nd and 3rd year undergraduate students using the fundamental principle of covariance as a basis for studying classical mechanics, electrodynamics, the special theory of relativity, and the general theory of relativity, before moving on to more advanced topics of field theory, differential forms, and modified theories of gravity.

Classical Field Theory

Classical Field Theory PDF

Author: Florian Scheck

Publisher: Springer Science & Business Media

Published: 2012-05-08

Total Pages: 443

ISBN-13: 3642279856

DOWNLOAD EBOOK →

The book describes Maxwell's equations first in their integral, directly testable form, then moves on to their local formulation. The first two chapters cover all essential properties of Maxwell's equations, including their symmetries and their covariance in a modern notation. Chapter 3 is devoted to Maxwell theory as a classical field theory and to solutions of the wave equation. Chapter 4 deals with important applications of Maxwell theory. It includes topical subjects such as metamaterials with negative refraction index and solutions of Helmholtz' equation in paraxial approximation relevant for the description of laser beams. Chapter 5 describes non-Abelian gauge theories from a classical, geometric point of view, in analogy to Maxwell theory as a prototype, and culminates in an application to the U(2) theory relevant for electroweak interactions. The last chapter 6 gives a concise summary of semi-Riemannian geometry as the framework for the classical field theory of gravitation. The chapter concludes with a discussion of the Schwarzschild solution of Einstein's equations and the classical tests of general relativity (perihelion precession of Mercury, and light deflection by the sun). ------ Textbook features: detailed figures, worked examples, problems and solutions, boxed inserts, highlighted special topics, highlighted important math etc., helpful summaries, appendix, index.