Chemical Nanofluids in Enhanced Oil Recovery

Chemical Nanofluids in Enhanced Oil Recovery PDF

Author: Rahul Saha

Publisher: CRC Press

Published: 2021-09-14

Total Pages: 170

ISBN-13: 1000433579

DOWNLOAD EBOOK →

Sustainable world economy requires a steady supply of crude oil without any production constraints. Thus, the ever-increasing energy demand of the entire world can be mostly met through the enhanced production from crude oil from existing reservoirs. With the fact that newer reservoirs with large quantities of crude oil could not be explored at a faster pace, it will be inevitable to produce the crude oil from matured reservoirs at an affordable cost. Among alternate technologies, the chemical enhanced oil recovery (EOR) technique has promising potential to recover residual oil from matured reservoirs being subjected to primary and secondary water flooding operations. Due to pertinent complex phenomena that often have a combinatorial role and influence, the implementation of chemical EOR schemes such as alkali/surfactant/polymer flooding and their combinations necessitates upon a fundamental understanding of the potential mechanisms and their influences upon one another and desired response variables. Addressing these issues, the book attempts to provide useful screening criteria, guidelines, and rules of thumb for the identification of process parametric sets (including reservoir characteristics) and response characteristics (such as IFT, adsorption etc.,) that favor alternate chemical EOR systems. Finally, the book highlights the relevance of nanofluid/nanoparticle for conventional and unconventional reservoirs and serves as a needful resource to understand the emerging oil recovery technology. Overall, the volume will be of greater relevance for practicing engineers and consultants that wish to accelerate on field applications of chemical and nano-fluid EOR systems. Further, to those budding engineers that wish to improvise upon their technical know-how, the book will serve as a much-needed repository.

Chemical Nanofluids in Enhanced Oil Recovery

Chemical Nanofluids in Enhanced Oil Recovery PDF

Author: Rahul Saha

Publisher: CRC Press

Published: 2021-09-14

Total Pages: 137

ISBN-13: 1000433617

DOWNLOAD EBOOK →

Sustainable world economy requires a steady supply of crude oil without any production constraints. Thus, the ever-increasing energy demand of the entire world can be mostly met through the enhanced production from crude oil from existing reservoirs. With the fact that newer reservoirs with large quantities of crude oil could not be explored at a faster pace, it will be inevitable to produce the crude oil from matured reservoirs at an affordable cost. Among alternate technologies, the chemical enhanced oil recovery (EOR) technique has promising potential to recover residual oil from matured reservoirs being subjected to primary and secondary water flooding operations. Due to pertinent complex phenomena that often have a combinatorial role and influence, the implementation of chemical EOR schemes such as alkali/surfactant/polymer flooding and their combinations necessitates upon a fundamental understanding of the potential mechanisms and their influences upon one another and desired response variables. Addressing these issues, the book attempts to provide useful screening criteria, guidelines, and rules of thumb for the identification of process parametric sets (including reservoir characteristics) and response characteristics (such as IFT, adsorption etc.,) that favor alternate chemical EOR systems. Finally, the book highlights the relevance of nanofluid/nanoparticle for conventional and unconventional reservoirs and serves as a needful resource to understand the emerging oil recovery technology. Overall, the volume will be of greater relevance for practicing engineers and consultants that wish to accelerate on field applications of chemical and nano-fluid EOR systems. Further, to those budding engineers that wish to improvise upon their technical know-how, the book will serve as a much-needed repository.

Chemical Enhanced Oil Recovery

Chemical Enhanced Oil Recovery PDF

Author: Patrizio Raffa

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2019-07-22

Total Pages: 277

ISBN-13: 3110640430

DOWNLOAD EBOOK →

This book aims at presenting, describing, and summarizing the latest advances in polymer flooding regarding the chemical synthesis of the EOR agents and the numerical simulation of compositional models in porous media, including a description of the possible applications of nanotechnology acting as a booster of traditional chemical EOR processes. A large part of the world economy depends nowadays on non-renewable energy sources, most of them of fossil origin. Though the search for and the development of newer, greener, and more sustainable sources have been going on for the last decades, humanity is still fossil-fuel dependent. Primary and secondary oil recovery techniques merely produce up to a half of the Original Oil In Place. Enhanced Oil Recovery (EOR) processes are aimed at further increasing this value. Among these, chemical EOR techniques (including polymer flooding) present a great potential in low- and medium-viscosity oilfields. • Describes recent advances in chemical enhanced oil recovery. • Contains detailed description of polymer flooding and nanotechnology as promising boosting tools for EOR. • Includes both experimental and theoretical studies. About the Authors Patrizio Raffa is Assistant Professor at the University of Groningen. He focuses on design and synthesis of new polymeric materials optimized for industrial applications such as EOR, coatings and smart materials. He (co)authored about 40 articles in peer reviewed journals. Pablo Druetta works as lecturer at the University of Groningen (RUG) and as engineering consultant. He received his Ph.D. from RUG in 2018 and has been teaching at a graduate level for 15 years. His research focus lies on computational fluid dynamics (CFD).

Nanofluids and Their Engineering Applications

Nanofluids and Their Engineering Applications PDF

Author: K.R.V. Subramanian

Publisher: CRC Press

Published: 2019-06-18

Total Pages: 498

ISBN-13: 0429886993

DOWNLOAD EBOOK →

Nanofluids are solid-liquid composite material consisting of solid nanoparticles suspended in liquid with enhanced thermal properties. This book introduces basic fluid mechanics, conduction and convection in fluids, along with nanomaterials for nanofluids, property characterization, and outline applications of nanofluids in solar technology, machining and other special applications. Recent experiments on nanofluids have indicated significant increase in thermal conductivity compared with liquids without nanoparticles or larger particles, strong temperature dependence of thermal conductivity, and significant increase in critical heat flux in boiling heat transfer, all of which are covered in the book. Key Features Exclusive title focusing on niche engineering applications of nanofluids Contains high technical content especially in the areas of magnetic nanofluids and dilute oxide based nanofluids Feature examples from research applications such as solar technology and heat pipes Addresses heat transfer and thermodynamic features such as efficiency and work with mathematical rigor Focused in content with precise technical definitions and treatment

A Mechanism Study of Nanoparticles for Enhanced Oil Recovery

A Mechanism Study of Nanoparticles for Enhanced Oil Recovery PDF

Author: Renfeng Jiang

Publisher:

Published: 2019

Total Pages:

ISBN-13:

DOWNLOAD EBOOK →

The application of nanotechnology in enhanced oil recovery (EOR) is emerging because nanoparticles have the potential to alter rock properties like wettability and fluid properties such as interfacial tension (IFT). In addition, a newly-proposed theory of the structural disjoining pressure (SDP) has become popular in the scientific community as well. However, a systematic literature review shows that ambiguity exists regarding which components in nanofluid play the role of changing wettability and interfacial tension (IFT). In addition, there are only a limited number of numerical and experimental studies to investigate the theory of the structural disjoining pressure (SDP), none of which can strictly confirm the theory. This motivates us to study these potential candidates of the mechanisms of nano-enhanced oil recovery (nano-EOR). We first conducted experiments using the contact angle goniometer to measure the contact angle and the interfacial tension (IFT) for various nanofluid compositions and the results showed that the addition of bare silica nanoparticles could reduce the contact angle. Specifically, a reduction in nanoparticle size and an increase in nanofluid concentration could further reduce the contact angle. However, bare nanoparticles did not change the interfacial tension (IFT). In order to investigate the theory of the structural disjoining pressure (SDP), we extended the model with a configuration that simulates the real case of the detachment of an oil droplet. The results showed that four conditions favor the spreading of the nanofluid on the substrate and the detachment of the oil droplet from the substrate to which it attached due to the structural disjoining pressure (SDP). These conditions include a high nanofluid concentration, a small nanoparticle size, a small contact angle of the nanofluid/oil/substrate system looking from the nanofluid phase, and a large oil droplet. Three imaging experiments were conducted using environmental scanning electron microscopy (ESEM) and dynamic fluid-film interferometry (DFI) to verify the theory of nanofluid spreading due to the structural disjoining pressure (SDP). ESEM imaging experiments showed the result of a single layer of nanoparticles but could not eliminate the effect of evaporation. Combining the ESEM images with the results from DFI in a liquid cell eliminated the evaporation effect and confirmed that nanoparticles are capable of spreading over the substrate in a thin film that is composed of one single layer of nanoparticles. Moreover, an experiment into the extension of the coffee ring effect showed the discovery of a new coffee ring pattern. Finally, we conducted a nanofluid flooding experiment using carbonate rocks. It was able to isolate the effect of the two confirmed mechanisms on the oil recovery rate at core-scale and tested the potential of nano-enhanced oil recovery (nano-EOR) at core-scale. We determined that an increase in oil recovery of 6% was due to the wettability alteration and another 6% increase in oil recovery was due to the mechanism of the structural disjoining pressure (SDP) for our low permeable carbonate core.

Enhanced Oil Recovery Processes

Enhanced Oil Recovery Processes PDF

Author: Ariffin Samsuri

Publisher: BoD – Books on Demand

Published: 2019-12-18

Total Pages: 162

ISBN-13: 1789851076

DOWNLOAD EBOOK →

Concerned with production decline, shortages of new oil reserves, and increasing world energy demand, the oil sector continues to search for economic and efficient techniques to enhance their oil recovery from the existing oil field using several enhanced oil recovery techniques (EOR)methods. Despite its highefficiency, widely acclaimed potentials, and limitations, the Low Salinity Water Flooding (LSWF), hybrid, and nanotechnology applications have gained vast interest with promising future to increase ultimate oil recovery, tackle operational challenges, reduce environmental damage, and allow the highest feasible recoveries with lower production costs. This synergistic combination has opened new routes for novel materials with fascinating properties. This book aims to provide an overview of EOR technology such as LSWF, hybrid, and nanotechnology applications in EOR processes.

Surface Phenomena in Enhanced Oil Recovery

Surface Phenomena in Enhanced Oil Recovery PDF

Author: Shah

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 876

ISBN-13: 1475703376

DOWNLOAD EBOOK →

It is with great pleasure and satisfaction that I present to the international scientific community this collection of papers presented at the symposium on Surface Phenomena in Enhanced Oil Recovery held at Stockholm, Sweden, during August 20-25, 1979. It has been an exciting and exhausting experience to edit the papers included in this volume. The proceedings cover six major areas of research related to chemical flooding processes for enhanced oil recovery, namely, 1) Fundamental aspects of the oil displacement process, 2) Micro structure of surfactant systems, 3) Emulsion rheology and oil dis placement mechanisms, 4) Wettability and oil displacement mecha nisms, 5) Adsorption, clays and chemical loss mechanisms, and 6) Polymer rheology and surfactant-polymer interactions. This book also includes two invited review papers, namely, "Research on Enhanced Oil Recovery: Past, Present and Future," and "Formation and Properties of Micelles and Microemulsions" by Professor J. J. Taber and Professor H. F. Eicke respectively. This symposium volume reflects the current state-of-art and our understanding of various surface phenomena in enhanced oil recovery processes. The participation by researchers from various countries in this symposium reflects the global interest in this area of research and the international effort to develop che science and technology of enhanced oil recovery processes.

Experimental Investigation of Nanoparticle Enhanced Oil Recovery Techniques Using Micromodels

Experimental Investigation of Nanoparticle Enhanced Oil Recovery Techniques Using Micromodels PDF

Author: Ayub Khezrnejad

Publisher:

Published: 2015

Total Pages:

ISBN-13:

DOWNLOAD EBOOK →

Nanotechnology has found widespread application in a diverse range of industries. Researchers are now investigating whether nanotechnology can be applied to enhance oil recovery. The goal of enhanced oil recovery is to manipulate the fluid-fluid properties (interfacial tension, viscosity), and fluid-rock properties (contact angle, relative permeability) to improve pore scale recovery efficiency. In this study, nanofluids were prepared and injected into micromodels to study their effectiveness on oil recovery. Silicon oxide and aluminum oxide nanoparticles were used. Nanofluid viscosity and interfacial tension between nanofluid and oil was measured and modeled. Response Surface Methodology (RSM) was used to investigate the effect of the factors and their interactions. Fluid characterization data shows that nanoparticles are effective in both interfacial tension reduction and viscosity enhancement. The results from the micromodel studies indicate that adding a small amount of nanoparticles to the brine can enhance oil recovery by approximately 10 % - 20 %.

Application of Nanoparticles for Oil Recovery

Application of Nanoparticles for Oil Recovery PDF

Author: Ole Torsaeter

Publisher: Mdpi AG

Published: 2021-06-30

Total Pages: 146

ISBN-13: 9783036513188

DOWNLOAD EBOOK →

The oil industry has, in the last decade, seen successful applications of nanotechnology in completion systems, completion fluids, drilling fluids, and in improvements of well constructions, equipment, and procedures. However, very few full field applications of nanoparticles as an additive to injection fluids for enhanced oil recovery (EOR) have been reported. Many types of chemical enhanced oil recovery methods have been used in fields all over the world for many decades and have resulted in higher recovery, but the projects have very o6en not been economic. Therefore, the oil industry is searching for a more efficient enhanced oil recovery method. Based on the success of nanotechnology in various areas of the oil industry, nanoparticles have been extensively studied as an additive in injection fluids for EOR. This book includes a selection of research articles on the use of nanoparticles for EOR application. The articles are discussing nanoparticles as additive in waterflooding and surfactant flooding, stability and wettability alteration ability of nanoparticles and nanoparticle stabilized foam for CO2-EOR. The book also includes articles on nanoparticles as an additive in biopolymer flooding and studies on the use of nanocellulose as a method to increase the viscosity of injection water. Mathematical models of the injection of nanoparticle-polymer solutions are also presented.

Nanofluids

Nanofluids PDF

Author: Shriram S. Sonawane

Publisher: CRC Press

Published: 2024-07-02

Total Pages: 179

ISBN-13: 1040051464

DOWNLOAD EBOOK →

Nanofluids provides insight to the mathematical, numerical, and experimental methodologies of the industrial application of nanofluids. It covers the fundamentals and applications of nanofluids in heat and mass transfer. Thoroughly covering the thermo-physical and optical properties of nanofluids in various operations, the book highlights the necessary parameters for enhancing their performance. It discusses the application of nanofluids in solar panels, car radiators, boiling operations, and CO2 absorption and regeneration. The book also considers the numeric approach for heat and mass transfer and applications, in addition to the challenges of nanofluids in industrial processes. The book will be a useful reference for researchers and graduate students studying nanotechnology and nanofluids advancements within the fields of mechanical and chemical engineering.