Chemical Applications of Atomic and Molecular Electrostatic Potentials

Chemical Applications of Atomic and Molecular Electrostatic Potentials PDF

Author: Peter Politzer

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 473

ISBN-13: 147579634X

DOWNLOAD EBOOK →

On March 26-27, 1980, a symposium organized by one of us (P. P. ) was held at the l79th American Chemical Society National ~1eeting in Houston, Texas, under the sponsorship of the Theoretical Chemistry Subdivision of the Division of Physical Chemistry. The symposium was entitled "The Role of the Electrostatic Potential in Chemistry," and it served as a stimulus for this book. The original scope and coverage have been broadened, however; included here, in addition to contributions from the eleven invited symposium speakers and two of the poster-session participants, are four papers that were specially invited for this book. Furthermore, several authors have taken this opportunity to present at least partial reviews of the areas being discussed. Most of the manuscripts were completed in the late spring and early summer of 1980. We hope that this book will achieve two goals: First, we are trying to provide an overall picture, including recent advances, of current chemical research, both fundamental and applied, involving the electrostatic potential. Second, we want to convey an appreci ation of both the powers and also the limitations of the electro static potential approach. In order to achieve these goals, we have selected contributors whose research areas provide a very broad coverage of the field. Throughout the book, we have used a. u.

Electrostatics of Atoms and Molecules

Electrostatics of Atoms and Molecules PDF

Author: Shridhar R. Gadre

Publisher: Universities Press

Published: 2000

Total Pages: 158

ISBN-13: 9788173712968

DOWNLOAD EBOOK →

This book introduces the subject of molecular electrostatics to postgraduate students, teachers and young researchers in chemistry, physics and biology. It discusses rigorous as well as applied aspects of the molecular electrostatic potential (MESP) and provides an essence of relevant mathematical arguments, without going into detailed derivations. A number of color illustrations highlight the salient features of MESP.

Molecular Electrostatic Potentials

Molecular Electrostatic Potentials PDF

Author: J.S. Murray

Publisher: Elsevier

Published: 1996-11-22

Total Pages: 681

ISBN-13: 0080536859

DOWNLOAD EBOOK →

Over the past 25 years, the molecular electrostatic potential has become firmly established as an effective guide to molecular interactions. With the recent advances in computational technology, it is currently being applied to a variety of important chemical and biological systems. Its range of applicability has expanded from primarily a focus on sites for electrophilic and nucleophilic attack to now include solvent effects, studies of zeolite, molecular cluster and crystal behavior, and the correlation and prediction of a wide range of macroscopic properties. Moreover, the increasing prominence of density functional theory has raised the molecular electrostatic potential to a new stature on a more fundamental conceptual level. It is rigorously defined in terms of the electron density, and has very interesting topological characteristics since it explicitly reflects opposing contributions from the nuclei and the electrons. This volume opens with a survey chapter by one of the original pioneers of the use of the electrostatic potential in studies of chemical reactivity, Jacopo Tomasi. Though the flow of the succeeding chapters is not stringently defined, the overall trend is that the emphasis changes gradually from methodology to applications. Chapters discussing more theoretical topics are placed near the end. Readers will find the wide variety of topics provided by an international group of authors both convincing and useful.

Chemical Reactivity in Confined Systems

Chemical Reactivity in Confined Systems PDF

Author: Pratim Kumar Chattaraj

Publisher: John Wiley & Sons

Published: 2021-08-13

Total Pages: 451

ISBN-13: 1119683238

DOWNLOAD EBOOK →

An insightful analysis of confined chemical systems for theoretical and experimental scientists Chemical Reactivity in Confined Systems: Theory and Applications presents a theoretical basis for the molecular phenomena observed in confined spaces. The book highlights state-of-the-art theoretical and computational approaches, with a focus on obtaining physically relevant clarification of the subject to enable the reader to build an appreciation of underlying chemical principles. The book includes real-world examples of confined systems that highlight how the reactivity of atoms and molecules change upon encapsulation. Chapters include discussions on recent developments related to several host-guest systems, including cucurbit[n]uril, ExBox+4, clathrate hydrates, octa acid cavitand, metal organic frameworks (MOFs), covalent organic frameworks (COFs), zeolites, fullerenes, and carbon nanotubes. Readers will learn how to carry out new calculations to understand the physicochemical behavior of confined quantum systems. Topics covered include: A thorough introduction to global reactivity descriptors, including electronegativity, hardness, and electrophilicity An exploration of the Fukui function, as well as dual descriptors, higher order derivatives, and reactivity through information theory A practical discussion of spin dependent reactivity and temperature dependent reactivity Concise treatments of population analysis, reaction force, electron localization functions, and the solvent effect on reactivity Perfect for academic researchers and graduate students in theoretical and computational chemistry and confined chemical systems, Chemical Reactivity in Confined Systems: Theory and Applications will also earn a place in the libraries of professionals working in the areas of catalysis, supramolecular chemistry, and porous materials.

Applications of Topological Methods in Molecular Chemistry

Applications of Topological Methods in Molecular Chemistry PDF

Author: Remi Chauvin

Publisher: Springer

Published: 2016-04-19

Total Pages: 586

ISBN-13: 3319290223

DOWNLOAD EBOOK →

This is the first edited volume that features two important frameworks, Hückel and quantum chemical topological analyses. The contributors, which include an array of academics of international distinction, describe recent applications of such topological methods to various fields and topics that provide the reader with the current state-of-the-art and give a flavour of the wide range of their potentialities.

Computational Medicinal Chemistry for Drug Discovery

Computational Medicinal Chemistry for Drug Discovery PDF

Author: Patrick Bultinck

Publisher: CRC Press

Published: 2003-12-17

Total Pages: 844

ISBN-13: 9780203913390

DOWNLOAD EBOOK →

Observing computational chemistry's proven value to the introduction of new medicines, Computational Medicinal Chemistry for Drug Discovery offers the techniques most frequently utilized by industry and academia for ligand design. Featuring contributions from more than 50 preeminent scientists, this book surveys molecular structure computation, intermolecular behavior, ligand-receptor interaction, and modeling. It also examines molecular mechanics, semi-empirical methods, wave function-based quantum chemistry, density functional theory, 3-D structure generation, and hybrid methods.

Reviews in Computational Chemistry, Volume 2

Reviews in Computational Chemistry, Volume 2 PDF

Author: Kenny B. Lipkowitz

Publisher: John Wiley & Sons

Published: 2009-09-22

Total Pages: 547

ISBN-13: 047012606X

DOWNLOAD EBOOK →

This second volume of the series 'Reviews in Computational Chemistry' explores new applications, new methodologies, and new perspectives. The topics covered include conformational analysis, protein folding, force field parameterizations, hydrogen bonding, charge distributions, electrostatic potentials, electronic spectroscopy, molecular property correlations, and the computational chemistry literature. Methodologies described include conformational search strategies, distance geometry, molecular mechanics, molecular dynamics, ab initio and semiempirical molecular orbital calculations, and quantitative structure-activity relationships (QSAR) using topological and electronic descriptors. A compendium of molecular modeling software will help users select the computational tools they need. Each chapter in 'Reviews in Computational Chemistry' serves as a brief tutorial for organic, physical, pharmaceutical, and biological chemists new to the field. Practitioners will be interested in the recent advances.

Conceptual Density Functional Theory and Its Application in the Chemical Domain

Conceptual Density Functional Theory and Its Application in the Chemical Domain PDF

Author: Nazmul Islam

Publisher: CRC Press

Published: 2018-06-13

Total Pages: 404

ISBN-13: 1351360248

DOWNLOAD EBOOK →

In this book, new developments based on conceptual density functional theory (CDFT) and its applications in chemistry are discussed. It also includes discussion of some applications in corrosion and conductivity and synthesis studies based on CDFT. The electronic structure principles—such as the electronegativity equalization principle, the hardness equalization principle, the electrophilicity equalization principle, and the nucleophilicity equalization principle, along studies based on these electronic structure principles—are broadly explained. In recent years some novel methodologies have been developed in the field of CDFT. These methodologies have been used to explore mutual relationships between the descriptors of CDFT, namely electronegativity, hardness, etc. The mutual relationship between the electronegativity and the hardness depend on the electronic configuration of the neutral atomic species. The volume attempts to cover almost all such methodology. Conceptual Density Function Theory and Its Application in the Chemical Domain will be an appropriate guide for research students as well as the supervisors in PhD programs. It will also be valuable resource for inorganic chemists, physical chemists, and quantum chemists. The reviews, research articles, short communications, etc., covered by this book will be appreciated by theoreticians as well as experimentalists.