Chemical and Biological Processes in Fluid Flows

Chemical and Biological Processes in Fluid Flows PDF

Author: Zolt n Neufeld

Publisher: Imperial College Press

Published: 2010

Total Pages: 305

ISBN-13: 1848161786

DOWNLOAD EBOOK →

Many chemical and biological processes take place in fluid environments in constant motion OCo chemical reactions in the atmosphere, biological population dynamics in the ocean, chemical reactors, combustion, and microfluidic devices. Applications of concepts from the field of nonlinear dynamical systems have led to significant progress over the last decade in the theoretical understanding of complex phenomena observed in such systems. This book introduces the theoretical approaches for describing mixing and transport in fluid flows. It reviews the basic concepts of dynamical phenomena arising from the nonlinear interactions in chemical and biological systems. The coverage includes a comprehensive overview of recent results on the effect of mixing on spatial structure and the dynamics of chemically and biologically active components in fluid flows, in particular oceanic plankton dynamics. Sample Chapter(s). Chapter 1: Fluid Flows (248 KB). Contents: Fluid Flows; Mixing and Dispersion in Fluid Flows; Chemical and Ecological Models; Reaction-Diffusion Dynamics; Fast Binary Reactions and the Lamellar Approach; Decay-Type and Stable Reaction Dynamics in Flows; Mixing in Autocatalytic-Type Processes; Mixing in Oscillatory Media; Further Reading. Readership: Physicists, applied mathematicians, chemical engineers and marine ecologists.

Chemical and Biological Processes in Fluid Flows

Chemical and Biological Processes in Fluid Flows PDF

Author: Zolt n Neufeld

Publisher: World Scientific

Published: 2010

Total Pages: 305

ISBN-13: 1860946992

DOWNLOAD EBOOK →

Many chemical and biological processes take place in fluid environments in constant motion ? chemical reactions in the atmosphere, biological population dynamics in the ocean, chemical reactors, combustion, and microfluidic devices. Applications of concepts from the field of nonlinear dynamical systems have led to significant progress over the last decade in the theoretical understanding of complex phenomena observed in such systems.This book introduces the theoretical approaches for describing mixing and transport in fluid flows. It reviews the basic concepts of dynamical phenomena arising from the nonlinear interactions in chemical and biological systems. The coverage includes a comprehensive overview of recent results on the effect of mixing on spatial structure and the dynamics of chemically and biologically active components in fluid flows, in particular oceanic plankton dynamics.

Heat Transfer and Fluid Flow in Biological Processes

Heat Transfer and Fluid Flow in Biological Processes PDF

Author: Sid M. Becker

Publisher: Academic Press

Published: 2014-12-31

Total Pages: 428

ISBN-13: 0124079008

DOWNLOAD EBOOK →

Heat Transfer and Fluid Flow in Biological Processes covers emerging areas in fluid flow and heat transfer relevant to biosystems and medical technology. This book uses an interdisciplinary approach to provide a comprehensive prospective on biofluid mechanics and heat transfer advances and includes reviews of the most recent methods in modeling of flows in biological media, such as CFD. Written by internationally recognized researchers in the field, each chapter provides a strong introductory section that is useful to both readers currently in the field and readers interested in learning more about these areas. Heat Transfer and Fluid Flow in Biological Processes is an indispensable reference for professors, graduate students, professionals, and clinical researchers in the fields of biology, biomedical engineering, chemistry and medicine working on applications of fluid flow, heat transfer, and transport phenomena in biomedical technology. Provides a wide range of biological and clinical applications of fluid flow and heat transfer in biomedical technology Covers topics such as electrokinetic transport, electroporation of cells and tissue dialysis, inert solute transport (insulin), thermal ablation of cancerous tissue, respiratory therapies, and associated medical technologies Reviews the most recent advances in modeling techniques

Biological Process Engineering

Biological Process Engineering PDF

Author: Arthur T. Johnson

Publisher: John Wiley & Sons

Published: 1998-12-14

Total Pages: 762

ISBN-13: 9780471245476

DOWNLOAD EBOOK →

A unique, accessible guide to the application of engineering methods to biological systems. Presenting for the first time a practical, design-oriented, interdisciplinary approach to transport phenomena involving biological systems, Biological Process Engineering emphasizes the common aspects of the three main transport processes-fluid flow, heat transfer, and mass transfer. In clear and simple terms, it explores the relevance of these processes to broadly defined biological systems such as the growth of microbes in bioreactors, the leaching of pollutants into groundwater, and the chemistry of food manufacturing. Reaching well beyond standard applications in medicine and the environment to areas of biotechnology, aquaculture, agriculture, and food processing, this book promotes analogical thinking that will lead to creative solutions. While keeping the mathematics to a minimum, it explains principles of effective system modeling and demonstrates a wide variety of problem-solving techniques. Readers will find: * Systems diagrams comparing and contrasting different transport processes * Biological examples for all types of systems, including metabolic pathways, locomotion, reproduction, responses to thermal conditions, and more * Numerous design charts and procedures * An extensive collection of tables of parameter values, not found in any other text. An ideal undergraduate text for biological engineering students taking courses in transport processes, Biological Process Engineering is also an excellent reference for practicing engineers. It introduces the reader to diverse biological phenomena, serves as a stepping-stone to more theoretical topics, and provides important insights into the fast-growing arena of biological engineering.

PERRY'S CHEMICAL ENGINEER'S HANDBOOK 8/E SECTION 6 FLUID&PARTICLE DYNAMICS (POD)

PERRY'S CHEMICAL ENGINEER'S HANDBOOK 8/E SECTION 6 FLUID&PARTICLE DYNAMICS (POD) PDF

Author: Don W. Green

Publisher: McGraw Hill Professional

Published: 2007-10-26

Total Pages: 59

ISBN-13: 0071542132

DOWNLOAD EBOOK →

Now in its eighth edition, Perry's Chemical Engineers' Handbook offers unrivaled, up-to-date coverage of all aspects of chemical engineering. For the first time, individual sections are available for purchase. Now you can receive only the content you need for a fraction of the price of the entire volume. Streamline your research, pinpoint specialized information, and save money by ordering single sections of this definitive chemical engineering reference today. First published in 1934, Perry's Chemical Engineers' Handbook has equipped generations of engineers and chemists with an expert source of chemical engineering information and data. Now updated to reflect the latest technology and processes of the new millennium, the Eighth Edition of this classic guide provides unsurpassed coverage of every aspect of chemical engineering-from fundamental principles to chemical processes and equipment to new computer applications. Filled with over 700 detailed illustrations, the Eighth Edition of Perry's Chemical Engineers' Handbook features: *Comprehensive tables and charts for unit conversion *A greatly expanded section on physical and chemical data *New to this edition: the latest advances in distillation, liquid-liquid extraction, reactor modeling, biological processes, biochemical and membrane separation processes, and chemical plant safety practices with accident case histories

Chemical Engineering Fluid Mechanics

Chemical Engineering Fluid Mechanics PDF

Author: Ron Darby

Publisher: CRC Press

Published: 2016-11-30

Total Pages: 580

ISBN-13: 1498724434

DOWNLOAD EBOOK →

This book provides readers with the most current, accurate, and practical fluid mechanics related applications that the practicing BS level engineer needs today in the chemical and related industries, in addition to a fundamental understanding of these applications based upon sound fundamental basic scientific principles. The emphasis remains on problem solving, and the new edition includes many more examples.

Modeling of Microscale Transport in Biological Processes

Modeling of Microscale Transport in Biological Processes PDF

Author: Sid M. Becker

Publisher: Academic Press

Published: 2017-01-12

Total Pages: 0

ISBN-13: 9780128045954

DOWNLOAD EBOOK →

Modeling of Microscale Transport in Biological Processes provides a compendium of recent advances in theoretical and computational modeling of biotransport phenomena at the microscale. The simulation strategies presented range from molecular to continuum models and consider both numerical and exact solution method approaches to coupled systems of equations. The biological processes covered in this book include digestion, molecular transport, microbial swimming, cilia mediated flow, microscale heat transfer, micro-vascular flow, vesicle dynamics, transport through bio-films and bio-membranes, and microscale growth dynamics. The book is written for an advanced academic research audience in the fields of engineering (encompassing biomedical, chemical, biological, mechanical, and electrical), biology and mathematics. Although written for, and by, expert researchers, each chapter provides a strong introductory section to ensure accessibility to readers at all levels.

Characterization, Modeling, Monitoring, and Remediation of Fractured Rock

Characterization, Modeling, Monitoring, and Remediation of Fractured Rock PDF

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2021-01-29

Total Pages: 177

ISBN-13: 0309373727

DOWNLOAD EBOOK →

Fractured rock is the host or foundation for innumerable engineered structures related to energy, water, waste, and transportation. Characterizing, modeling, and monitoring fractured rock sites is critical to the functioning of those infrastructure, as well as to optimizing resource recovery and contaminant management. Characterization, Modeling, Monitoring, and Remediation of Fractured Rock examines the state of practice and state of art in the characterization of fractured rock and the chemical and biological processes related to subsurface contaminant fate and transport. This report examines new developments, knowledge, and approaches to engineering at fractured rock sites since the publication of the 1996 National Research Council report Rock Fractures and Fluid Flow: Contemporary Understanding and Fluid Flow. Fundamental understanding of the physical nature of fractured rock has changed little since 1996, but many new characterization tools have been developed, and there is now greater appreciation for the importance of chemical and biological processes that can occur in the fractured rock environment. The findings of Characterization, Modeling, Monitoring, and Remediation of Fractured Rock can be applied to all types of engineered infrastructure, but especially to engineered repositories for buried or stored waste and to fractured rock sites that have been contaminated as a result of past disposal or other practices. The recommendations of this report are intended to help the practitioner, researcher, and decision maker take a more interdisciplinary approach to engineering in the fractured rock environment. This report describes how existing tools-some only recently developed-can be used to increase the accuracy and reliability of engineering design and management given the interacting forces of nature. With an interdisciplinary approach, it is possible to conceptualize and model the fractured rock environment with acceptable levels of uncertainty and reliability, and to design systems that maximize remediation and long-term performance. Better scientific understanding could inform regulations, policies, and implementation guidelines related to infrastructure development and operations. The recommendations for research and applications to enhance practice of this book make it a valuable resource for students and practitioners in this field.

Flows and Chemical Reactions

Flows and Chemical Reactions PDF

Author: Roger Prud'homme

Publisher: John Wiley & Sons

Published: 2013-01-09

Total Pages: 240

ISBN-13: 1118588223

DOWNLOAD EBOOK →

The aim of this book is to relate fluid flows to chemical reactions. It focuses on the establishment of consistent systems of equations with their boundary conditions and interfaces, which allow us to model and deal with complex situations. Chapter 1 is devoted to simple fluids, i.e. to a single chemical constituent. The basic principles of incompressible and compressible fluid mechanics, are presented in the most concise and educational manner possible, for perfect or dissipative fluids. Chapter 2 relates to the flows of fluid mixtures in the presence of chemical reactions. Chapter 3 is concerned with interfaces and lines. Interfaces have been the subject of numerous publications and books for nearly half a century. Lines and curvilinear media are less known Several appendices on mathematical notation, thermodynamics and mechanics methods are grouped together in Chapter 4. This summary presentation of the basic equations of simple fluids, with exercises and their solutions, as well as those of chemically reacting flows, and interfaces and lines will be very useful for graduate students, engineers, teachers and scientific researchers in many domains of science and industry who wish to investigate problems of reactive flows. Portions of the text may be used in courses or seminars on fluid mechanics.

Computational Fluid Dynamics Applications in Bio and Biomedical Processes

Computational Fluid Dynamics Applications in Bio and Biomedical Processes PDF

Author: Satya Eswari Jujjavarapu

Publisher: Springer Nature

Published: 2024-01-17

Total Pages: 198

ISBN-13: 9819971292

DOWNLOAD EBOOK →

This book covers emerging areas in novel design and their hydrodynamic properties relevant to bioreactors, environmental system, electrochemical systems, food processing and biomedical engineering. This book uses an interdisciplinary approach to provide a comprehensive prospective simulation modeling and hydrodynamic study in advanced biotechnological process and includes reviews of the most recent state of art in modeling and simulation of flows in biological process, such as CFD. Written by internationally recognized researchers in the field, each chapter provides a strong introductory section that is useful to both readers currently in the field and readers interested in learning more about these areas.