Characterization of Wide Bandgap Power Semiconductor Devices

Characterization of Wide Bandgap Power Semiconductor Devices PDF

Author: Fei Wang

Publisher: Institution of Engineering and Technology

Published: 2018

Total Pages: 348

ISBN-13: 1785614916

DOWNLOAD EBOOK →

At the heart of modern power electronics converters are power semiconductor switching devices. The emergence of wide bandgap (WBG) semiconductor devices, including silicon carbide and gallium nitride, promises power electronics converters with higher efficiency, smaller size, lighter weight, and lower cost than converters using the established silicon-based devices. However, WBG devices pose new challenges for converter design and require more careful characterization, in particular due to their fast switching speed and more stringent need for protection. Characterization of Wide Bandgap Power Semiconductor Devices presents comprehensive methods with examples for the characterization of this important class of power devices. After an introduction, the book covers pulsed static characterization; junction capacitance characterization; fundamentals of dynamic characterization; gate drive for dynamic characterization; layout design and parasitic management; protection design for double pulse test; measurement and data processing for dynamic characterization; cross-talk consideration; impact of three-phase system; and topology considerations.

Wide Bandgap Semiconductors for Power Electronics

Wide Bandgap Semiconductors for Power Electronics PDF

Author: Peter Wellmann

Publisher: John Wiley & Sons

Published: 2022-01-10

Total Pages: 743

ISBN-13: 3527346716

DOWNLOAD EBOOK →

Wide Bandgap Semiconductors for Power Electronic A guide to the field of wide bandgap semiconductor technology Wide Bandgap Semiconductors for Power Electronics is a comprehensive and authoritative guide to wide bandgap materials silicon carbide, gallium nitride, diamond and gallium(III) oxide. With contributions from an international panel of experts, the book offers detailed coverage of the growth of these materials, their characterization, and how they are used in a variety of power electronics devices such as transistors and diodes and in the areas of quantum information and hybrid electric vehicles. The book is filled with the most recent developments in the burgeoning field of wide bandgap semiconductor technology and includes information from cutting-edge semiconductor companies as well as material from leading universities and research institutions. By taking both scholarly and industrial perspectives, the book is designed to be a useful resource for scientists, academics, and corporate researchers and developers. This important book: Presents a review of wide bandgap materials and recent developments Links the high potential of wide bandgap semiconductors with the technological implementation capabilities Offers a unique combination of academic and industrial perspectives Meets the demand for a resource that addresses wide bandgap materials in a comprehensive manner Written for materials scientists, semiconductor physicists, electrical engineers, Wide Bandgap Semiconductors for Power Electronics provides a state of the art guide to the technology and application of SiC and related wide bandgap materials.

Wide Bandgap Semiconductor Power Devices

Wide Bandgap Semiconductor Power Devices PDF

Author: B. Jayant Baliga

Publisher: Woodhead Publishing

Published: 2018-10-17

Total Pages: 418

ISBN-13: 0081023073

DOWNLOAD EBOOK →

Wide Bandgap Semiconductor Power Devices: Materials, Physics, Design and Applications provides readers with a single resource on why these devices are superior to existing silicon devices. The book lays the groundwork for an understanding of an array of applications and anticipated benefits in energy savings. Authored by the Founder of the Power Semiconductor Research Center at North Carolina State University (and creator of the IGBT device), Dr. B. Jayant Baliga is one of the highest regarded experts in the field. He thus leads this team who comprehensively review the materials, device physics, design considerations and relevant applications discussed. Comprehensively covers power electronic devices, including materials (both gallium nitride and silicon carbide), physics, design considerations, and the most promising applications Addresses the key challenges towards the realization of wide bandgap power electronic devices, including materials defects, performance and reliability Provides the benefits of wide bandgap semiconductors, including opportunities for cost reduction and social impact

Wide Bandgap (SiC/GaN) Power Devices Characterization and Modeling

Wide Bandgap (SiC/GaN) Power Devices Characterization and Modeling PDF

Author: Ke Li

Publisher:

Published: 2014

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK →

Compared to traditional silicon (Si) semiconductor material, wide bandgap (WBG) materials like silicon carbide (SiC) and gallium nitride are gradually applied to fabricate power semiconductor devices, which are used in power converters to achieve high power efficiency, high operation temperature and high switching frequency. As those power devices are relatively new, their characterization and modeling are important to better understand their characteristics for better use. This dissertation is mainly focused on those WBG power semiconductor devices characterization, modeling and fast switching currents measurement. In order to measure their static characteristics, a single-pulse method is presented. A SiC diode and a "normally-off" SiC JFET is characterized by this method from ambient temperature to their maximal junction temperature with the maximal power dissipation around kilowatt. Afterwards, in order to determine power device inter-electrode capacitances, a measurement method based on the use of multiple current probes is proposed and validated by measuring inter-electrode capacitances of power devices of different technologies. Behavioral models of a Si diode and the SiC JFET are built by using the results of the above characterization methods, by which the evolution of the inter-electrode capacitances for different operating conditions are included in the models. Power diode models are validated with the measurements, in which the current is measured by a proposed current surface probe.

Wide Bandgap Based Devices

Wide Bandgap Based Devices PDF

Author: Farid Medjdoub

Publisher: MDPI

Published: 2021-05-26

Total Pages: 242

ISBN-13: 3036505660

DOWNLOAD EBOOK →

Emerging wide bandgap (WBG) semiconductors hold the potential to advance the global industry in the same way that, more than 50 years ago, the invention of the silicon (Si) chip enabled the modern computer era. SiC- and GaN-based devices are starting to become more commercially available. Smaller, faster, and more efficient than their counterpart Si-based components, these WBG devices also offer greater expected reliability in tougher operating conditions. Furthermore, in this frame, a new class of microelectronic-grade semiconducting materials that have an even larger bandgap than the previously established wide bandgap semiconductors, such as GaN and SiC, have been created, and are thus referred to as “ultra-wide bandgap” materials. These materials, which include AlGaN, AlN, diamond, Ga2O3, and BN, offer theoretically superior properties, including a higher critical breakdown field, higher temperature operation, and potentially higher radiation tolerance. These attributes, in turn, make it possible to use revolutionary new devices for extreme environments, such as high-efficiency power transistors, because of the improved Baliga figure of merit, ultra-high voltage pulsed power switches, high-efficiency UV-LEDs, and electronics. This Special Issue aims to collect high quality research papers, short communications, and review articles that focus on wide bandgap device design, fabrication, and advanced characterization. The Special Issue will also publish selected papers from the 43rd Workshop on Compound Semiconductor Devices and Integrated Circuits, held in France (WOCSDICE 2019), which brings together scientists and engineers working in the area of III–V, and other compound semiconductor devices and integrated circuits. In particular, the following topics are addressed: – GaN- and SiC-based devices for power and optoelectronic applications – Ga2O3 substrate development, and Ga2O3 thin film growth, doping, and devices – AlN-based emerging material and devices – BN epitaxial growth, characterization, and devices

Nitride Wide Bandgap Semiconductor Material and Electronic Devices

Nitride Wide Bandgap Semiconductor Material and Electronic Devices PDF

Author: Yue Hao

Publisher: CRC Press

Published: 2016-11-03

Total Pages: 325

ISBN-13: 1315351838

DOWNLOAD EBOOK →

This book systematically introduces physical characteristics and implementations of III-nitride wide bandgap semiconductor materials and electronic devices, with an emphasis on high-electron-mobility transistors (HEMTs). The properties of nitride semiconductors make the material very suitable for electronic devices used in microwave power amplification, high-voltage switches, and high-speed digital integrated circuits.

Wide Energy Bandgap Electronic Devices

Wide Energy Bandgap Electronic Devices PDF

Author: Fan Ren

Publisher: World Scientific

Published: 2003

Total Pages: 526

ISBN-13: 9812382461

DOWNLOAD EBOOK →

Presents state-of-the-art GaN and SiC electronic devices, as well as detailed applications of these devices to power conditioning, r. f. base station infrastructure and high temperature electronics.

Wide Bandgap Semiconductor Electronics And Devices

Wide Bandgap Semiconductor Electronics And Devices PDF

Author: Uttam Singisetti

Publisher: World Scientific

Published: 2019-12-10

Total Pages: 258

ISBN-13: 9811216495

DOWNLOAD EBOOK →

'This book is more suited for researchers already familiar with WBS who are interested in developing new WBG materials and devices since it provides the latest developments in new materials and processes and trends for WBS and UWBS technology.'IEEE Electrical Insulation MagazineWith the dawn of Gallium Oxide (Ga2O₃) and Aluminum Gallium Nitride (AlGaN) electronics and the commercialization of Gallium Nitride (GaN) and Silicon Carbide (SiC) based devices, the field of wide bandgap materials and electronics has never been more vibrant and exciting than it is now. Wide bandgap semiconductors have had a strong presence in the research and development arena for many years. Recently, the increasing demand for high efficiency power electronics and high speed communication electronics, together with the maturity of the synthesis and fabrication of wide bandgap semicon-ductors, has catapulted wide bandgap electronics and optoelectronics into the mainstream.Wide bandgap semiconductors exhibit excellent material properties, which can potentially enable power device operation at higher efficiency, higher temperatures, voltages, and higher switching speeds than current Si technology. This edited volume will serve as a useful reference for researchers in this field — newcomers and experienced alike.This book discusses a broad range of topics including fundamental transport studies, growth of high-quality films, advanced materials characterization, device modeling, high frequency, high voltage electronic devices and optical devices written by the experts in their respective fields. They also span the whole spectrum of wide bandgap materials including AlGaN, Ga2O₃and diamond.

Wide Energy Bandgap Electronic Devices

Wide Energy Bandgap Electronic Devices PDF

Author: Fan Ren

Publisher: World Scientific

Published: 2003-07-14

Total Pages: 526

ISBN-13: 9814486892

DOWNLOAD EBOOK →

This book provides a summary of the current state-of-the-art in SiC and GaN and identify future areas of development. The remarkable improvements in material quality and device performance in the last few years show the promise of these technologies for areas that Si cannot operate because of it's smaller bandgap. We feel that this collection of chapters provides an excellent introduction to the field and is an outstanding reference for those performing research on wide bandgap semiconductors.In this book, we bring together numerous experts in the field to review progress in SiC and GaN electronic devices and novel detectors. Professor Morkoc reviews the growth and characterization of nitrides, followed by chapters from Professor Shur, Professor Karmalkar, and Professor Gaska on High Electron Mobility Transistors, Professor Pearton and co-workers on ultra-high breakdown voltage GaN-based rectifiers and the group of Professor Abernathy on emerging MOS devices in the nitride system. Dr Baca from Sandia National Laboratories and Dr Chang from Agilent review the use of mixed group V-nitrides as the base layer in novel Heterojunction Bipolar Transistors. There are 3 chapters on SiC, including Professor Skowronski on growth and characterization, Professor Chow on power Schottky and pin rectifiers and Professor Cooper on power MOSFETs. Professor Dupuis and Professor Campbell give an overview of short wavelength, nitride based detectors. Finally, Jihyun Kim and co-workers describe recent progress in wide bandgap semiconductor spintronics where one can obtain room temperature ferromagnetism and exploit the spin of the electron in addition to its charge.