Chaos in Systems with Noise

Chaos in Systems with Noise PDF

Author: Tomasz Kapitaniak

Publisher: World Scientific

Published: 1990

Total Pages: 256

ISBN-13: 9789810204105

DOWNLOAD EBOOK →

As in the first edition, the influence of random noise on the chaotic behavior of dissipative dynamical systems is investigated. Problems are illustrated by mechanical examples. This revised and updated edition contains new sections on the summary of probability theory, homoclinic chaos, Melnikov method, routes to chaos, stabilization of period-doubling, and Hopf bifurcation by noise. Some chapters have been rewritten and new examples have been added.

Chaos, Fractals, and Noise

Chaos, Fractals, and Noise PDF

Author: Andrzej Lasota

Publisher: Springer Science & Business Media

Published: 2013-11-27

Total Pages: 481

ISBN-13: 146124286X

DOWNLOAD EBOOK →

The first edition of this book was originally published in 1985 under the ti tle "Probabilistic Properties of Deterministic Systems. " In the intervening years, interest in so-called "chaotic" systems has continued unabated but with a more thoughtful and sober eye toward applications, as befits a ma turing field. This interest in the serious usage of the concepts and techniques of nonlinear dynamics by applied scientists has probably been spurred more by the availability of inexpensive computers than by any other factor. Thus, computer experiments have been prominent, suggesting the wealth of phe nomena that may be resident in nonlinear systems. In particular, they allow one to observe the interdependence between the deterministic and probabilistic properties of these systems such as the existence of invariant measures and densities, statistical stability and periodicity, the influence of stochastic perturbations, the formation of attractors, and many others. The aim of the book, and especially of this second edition, is to present recent theoretical methods which allow one to study these effects. We have taken the opportunity in this second edition to not only correct the errors of the first edition, but also to add substantially new material in five sections and a new chapter.

Chaos, Noise and Fractals

Chaos, Noise and Fractals PDF

Author: E. Roy Pike

Publisher: CRC Press

Published: 2020-08-27

Total Pages: 282

ISBN-13: 1000156915

DOWNLOAD EBOOK →

The study of nonlinear dynamical systems has been gathering momentum since the late 1950s. It now constitutes one of the major research areas of modern theoretical physics. The twin themes of fractals and chaos, which are linked by attracting sets in chaotic systems that are fractal in structure, are currently generating a great deal of excitement. The degree of structure robustness in the presence of stochastic and quantum noise is thus a topic of interest. Chaos, Noise and Fractals discusses the role of fractals in quantum mechanics, the influence of phase noise in chaos and driven optical systems, and the arithmetic of chaos. The book represents a balanced overview of the field and is a worthy addition to the reading lists of researchers and students interested in any of the varied, and sometimes bizarre, aspects of this intriguing subject.

Chaos-Based Digital Communication Systems

Chaos-Based Digital Communication Systems PDF

Author: Francis C.M. Lau

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 236

ISBN-13: 3662051834

DOWNLOAD EBOOK →

One of the first books in this area, this text focuses on important aspects of the system operation, analysis and performance evaluation of selected chaos-based digital communications systems – a hot topic in communications and signal processing.

Evolution, Learning and Cognition

Evolution, Learning and Cognition PDF

Author: Yee Chun Lee

Publisher: World Scientific

Published: 1988

Total Pages: 430

ISBN-13: 9789971505301

DOWNLOAD EBOOK →

This review volume represents the first attempt to provide a comprehensive overview of this exciting and rapidly evolving development. The book comprises specially commissioned articles by leading researchers in the areas of neural networks and connectionist systems, classifier systems, adaptive network systems, genetic algorithm, cellular automata, artificial immune systems, evolutionary genetics, cognitive science, optical computing, combinatorial optimization, and cybernetics.

Practical Numerical Algorithms for Chaotic Systems

Practical Numerical Algorithms for Chaotic Systems PDF

Author: Thomas S. Parker

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 354

ISBN-13: 1461234867

DOWNLOAD EBOOK →

One of the basic tenets of science is that deterministic systems are completely predictable-given the initial condition and the equations describing a system, the behavior of the system can be predicted 1 for all time. The discovery of chaotic systems has eliminated this viewpoint. Simply put, a chaotic system is a deterministic system that exhibits random behavior. Though identified as a robust phenomenon only twenty years ago, chaos has almost certainly been encountered by scientists and engi neers many times during the last century only to be dismissed as physical noise. Chaos is such a wide-spread phenomenon that it has now been reported in virtually every scientific discipline: astronomy, biology, biophysics, chemistry, engineering, geology, mathematics, medicine, meteorology, plasmas, physics, and even the social sci ences. It is no coincidence that during the same two decades in which chaos has grown into an independent field of research, computers have permeated society. It is, in fact, the wide availability of inex pensive computing power that has spurred much of the research in chaotic dynamics. The reason is simple: the computer can calculate a solution of a nonlinear system. This is no small feat. Unlike lin ear systems, where closed-form solutions can be written in terms of the system's eigenvalues and eigenvectors, few nonlinear systems and virtually no chaotic systems possess closed-form solutions.

Chaos and Complex Systems

Chaos and Complex Systems PDF

Author: Stavros G. Stavrinides

Publisher: Springer Nature

Published: 2020-02-19

Total Pages: 169

ISBN-13: 3030354415

DOWNLOAD EBOOK →

This book presents the proceedings of the “5th International Interdisciplinary Chaos Symposium on Chaos and Complex Systems (CCS).” All Symposia in the series bring together scientists, engineers, economists and social scientists, creating a vivid forum for discussions on the latest insights and findings obtained in the areas of complexity, nonlinear dynamics and chaos theory, as well as their interdisciplinary applications. The scope of the latest Symposium was enriched with a variety of contemporary, interdisciplinary topics, including but not limited to: fundamental theory of nonlinear dynamics, networks, circuits, systems, biology, evolution and ecology, fractals and pattern formation, nonlinear time series analysis, neural networks, sociophysics and econophysics, complexity management and global systems.

Deterministic Chaos in One-Dimensional Continuous Systems

Deterministic Chaos in One-Dimensional Continuous Systems PDF

Author: Jan Awrejcewicz

Publisher: World Scientific

Published: 2016-03-14

Total Pages: 576

ISBN-13: 9814719714

DOWNLOAD EBOOK →

This book focuses on the computational analysis of nonlinear vibrations of structural members (beams, plates, panels, shells), where the studied dynamical problems can be reduced to the consideration of one spatial variable and time. The reduction is carried out based on a formal mathematical approach aimed at reducing the problems with infinite dimension to finite ones. The process also includes a transition from governing nonlinear partial differential equations to a set of finite number of ordinary differential equations. Beginning with an overview of the recent results devoted to the analysis and control of nonlinear dynamics of structural members, placing emphasis on stability, buckling, bifurcation and deterministic chaos, simple chaotic systems are briefly discussed. Next, bifurcation and chaotic dynamics of the Euler–Bernoulli and Timoshenko beams including the geometric and physical nonlinearity as well as the elastic–plastic deformations are illustrated. Despite the employed classical numerical analysis of nonlinear phenomena, the various wavelet transforms and the four Lyapunov exponents are used to detect, monitor and possibly control chaos, hyper-chaos, hyper-hyper-chaos and deep chaos exhibited by rectangular plate-strips and cylindrical panels. The book is intended for post-graduate and doctoral students, applied mathematicians, physicists, teachers and lecturers of universities and companies dealing with a nonlinear dynamical system, as well as theoretically inclined engineers of mechanical and civil engineering. Contents:Bifurcational and Chaotic Dynamics of Simple Structural Members:BeamsPlatesPanelsShellsIntroduction to Fractal Dynamics:Cantor Set and Cantor DustKoch Snowflake1D MapsSharkovsky's TheoremJulia SetMandelbrot's SetIntroduction to Chaos and Wavelets:Routes to ChaosQuantifying Chaotic DynamicsSimple Chaotic Models:IntroductionAutonomous SystemsNon-Autonomous SystemsDiscrete and Continuous Dissipative Systems:IntroductionLinear FrictionNonlinear FrictionHysteretic FrictionImpact DampingDamping in Continuous 1D SystemsEuler-Bernoulli Beams:IntroductionPlanar BeamsLinear Planar Beams and Stationary Temperature FieldsCurvilinear Planar Beams and Stationary Temperature and Electrical FieldsBeams with Elasto-Plastic DeformationsMulti-Layer BeamsTimoshenko and Sheremetev-Pelekh Beams:The Timoshenko BeamsThe Sheremetev-Pelekh BeamsConcluding RemarksPanels:Infinite Length PanelsCylindrical Panels of Infinite LengthPlates and Shells:Plates with Initial ImperfectionsFlexible Axially-Symmetric Shells Readership: Post-graduate and doctoral students, applied mathematicians, physicists, mechanical and civil engineers. Key Features:Includes fascinating and rich dynamics exhibited by simple structural members and by the solution properties of the governing 1D non-linear PDEs, suitable for applied mathematicians and physicistsCovers a wide variety of the studied PDEs, their validated reduction to ODEs, classical and non-classical methods of analysis, influence of various boundary conditions and control parameters, as well as the illustrative presentation of the obtained results in the form of colour 2D and 3D figures and vibration type charts and scalesContains originally discovered, illustrated and discussed novel and/or modified classical scenarios of transition from regular to chaotic dynamics exhibited by 1D structural members, showing a way to control chaotic and bifurcational dynamics, with directions to study other dynamical systems modeled by chains of nonlinear oscillators

Chaos: Concepts, Control and Constructive Use

Chaos: Concepts, Control and Constructive Use PDF

Author: Yurii Bolotin

Publisher: Springer

Published: 2016-10-24

Total Pages: 281

ISBN-13: 3319424963

DOWNLOAD EBOOK →

This book offers a short and concise introduction to the many facets of chaos theory. While the study of chaotic behavior in nonlinear, dynamical systems is a well-established research field with ramifications in all areas of science, there is a lot to be learnt about how chaos can be controlled and, under appropriate conditions, can actually be constructive in the sense of becoming a control parameter for the system under investigation, stochastic resonance being a prime example. The present work stresses the latter aspects and, after recalling the paradigm changes introduced by the concept of chaos, leads the reader skillfully through the basics of chaos control by detailing the relevant algorithms for both Hamiltonian and dissipative systems, among others. The main part of the book is then devoted to the issue of synchronization in chaotic systems, an introduction to stochastic resonance, and a survey of ratchet models. In this second, revised and enlarged edition, two more chapters explore the many interfaces of quantum physics and dynamical systems, examining in turn statistical properties of energy spectra, quantum ratchets, and dynamical tunneling, among others. This text is particularly suitable for non-specialist scientists, engineers, and applied mathematical scientists from related areas, wishing to enter the field quickly and efficiently. From the reviews of the first edition: This book is an excellent introduction to the key concepts and control of chaos in (random) dynamical systems [...] The authors find an outstanding balance between main physical ideas and mathematical terminology to reach their audience in an impressive and lucid manner. This book is ideal for anybody who would like to grasp quickly the main issues related to chaos in discrete and continuous time. Henri Schurz, Zentralblatt MATH, Vol. 1178, 2010.