Chaos: Concepts, Control and Constructive Use

Chaos: Concepts, Control and Constructive Use PDF

Author: Yurii Bolotin

Publisher: Springer

Published: 2016-10-24

Total Pages: 281

ISBN-13: 3319424963

DOWNLOAD EBOOK →

This book offers a short and concise introduction to the many facets of chaos theory. While the study of chaotic behavior in nonlinear, dynamical systems is a well-established research field with ramifications in all areas of science, there is a lot to be learnt about how chaos can be controlled and, under appropriate conditions, can actually be constructive in the sense of becoming a control parameter for the system under investigation, stochastic resonance being a prime example. The present work stresses the latter aspects and, after recalling the paradigm changes introduced by the concept of chaos, leads the reader skillfully through the basics of chaos control by detailing the relevant algorithms for both Hamiltonian and dissipative systems, among others. The main part of the book is then devoted to the issue of synchronization in chaotic systems, an introduction to stochastic resonance, and a survey of ratchet models. In this second, revised and enlarged edition, two more chapters explore the many interfaces of quantum physics and dynamical systems, examining in turn statistical properties of energy spectra, quantum ratchets, and dynamical tunneling, among others. This text is particularly suitable for non-specialist scientists, engineers, and applied mathematical scientists from related areas, wishing to enter the field quickly and efficiently. From the reviews of the first edition: This book is an excellent introduction to the key concepts and control of chaos in (random) dynamical systems [...] The authors find an outstanding balance between main physical ideas and mathematical terminology to reach their audience in an impressive and lucid manner. This book is ideal for anybody who would like to grasp quickly the main issues related to chaos in discrete and continuous time. Henri Schurz, Zentralblatt MATH, Vol. 1178, 2010.

Chaos: Concepts, Control and Constructive Use

Chaos: Concepts, Control and Constructive Use PDF

Author: Yurii Bolotin

Publisher: Springer Science & Business Media

Published: 2009-08-06

Total Pages: 203

ISBN-13: 3642009379

DOWNLOAD EBOOK →

The study of physics has changed in character, mainly due to the passage from the analyses of linear systems to the analyses of nonlinear systems. Such a change began, it goes without saying, a long time ago but the qualitative change took place and boldly evolved after the understanding of the nature of chaos in nonlinear s- tems. The importance of these systems is due to the fact that the major part of physical reality is nonlinear. Linearity appears as a result of the simpli?cation of real systems, and often, is hardly achievable during the experimental studies. In this book, we focus our attention on some general phenomena, naturally linked with nonlinearity where chaos plays a constructive part. The ?rst chapter discusses the concept of chaos. It attempts to describe the me- ing of chaos according to the current understanding of it in physics and mat- matics. The content of this chapter is essential to understand the nature of chaos and its appearance in deterministic physical systems. Using the Turing machine, we formulate the concept of complexity according to Kolmogorov. Further, we state the algorithmic theory of Kolmogorov–Martin-Lof ̈ randomness, which gives a deep understanding of the nature of deterministic chaos. Readers will not need any advanced knowledge to understand it and all the necessary facts and de?nitions will be explained.

Thermoacoustic Instability

Thermoacoustic Instability PDF

Author: R. I. Sujith

Publisher: Springer Nature

Published: 2021-12-14

Total Pages: 484

ISBN-13: 3030811352

DOWNLOAD EBOOK →

This book systematically presents the consolidated findings of the phenomenon of self-organization observed during the onset of thermoacoustic instability using approaches from dynamical systems and complex systems theory. Over the last decade, several complex dynamical states beyond limit cycle oscillations such as quasiperiodicity, frequency-locking, period-n, chaos, strange non-chaos, and intermittency have been discovered in thermoacoustic systems operated in laminar and turbulent flow regimes. During the onset of thermoacoustic instability in turbulent systems, an ordered acoustic field and large coherent vortices emerge from the background of turbulent combustion. This emergence of order from disorder in both temporal and spatiotemporal dynamics is explored in the contexts of synchronization, pattern formation, collective interaction, multifractality, and complex networks. For the past six decades, the spontaneous emergence of large amplitude, self-sustained, tonal oscillations in confined combustion systems, characterized as thermoacoustic instability, has remained one of the most challenging areas of research. The presence of such instabilities continues to hinder the development and deployment of high-performance combustion systems used in power generation and propulsion applications. Even with the advent of sophisticated measurement techniques to aid experimental investigations and vast improvements in computational power necessary to capture flow physics in high fidelity simulations, conventional reductionist approaches have not succeeded in explaining the plethora of dynamical behaviors and the associated complexities that arise in practical combustion systems. As a result, models and theories based on such approaches are limited in their application to mitigate or evade thermoacoustic instabilities, which continue to be among the biggest concerns for engine manufacturers today. This book helps to overcome these limitations by providing appropriate methodologies to deal with nonlinear thermoacoustic oscillations, and by developing control strategies that can mitigate and forewarn thermoacoustic instabilities. The book is also beneficial to scientists and engineers studying the occurrence of several other instabilities, such as flow-induced vibrations, compressor surge, aeroacoustics and aeroelastic instabilities in diverse fluid-mechanical environments, to graduate students who intend to apply dynamical systems and complex systems approach to their areas of research, and to physicists who look for experimental applications of their theoretical findings on nonlinear and complex systems.

Handbook of Chaos Control

Handbook of Chaos Control PDF

Author: Eckehard Schöll

Publisher: John Wiley & Sons

Published: 2008-09-08

Total Pages: 849

ISBN-13: 3527622322

DOWNLOAD EBOOK →

This long-awaited revised second edition of the standard reference on the subject has been considerably expanded to include such recent developments as novel control schemes, control of chaotic space-time patterns, control of noisy nonlinear systems, and communication with chaos, as well as promising new directions in research. The contributions from leading international scientists active in the field provide a comprehensive overview of our current level of knowledge on chaos control and its applications in physics, chemistry, biology, medicine, and engineering. In addition, they show the overlap with the traditional field of control theory in the engineering community. An interdisciplinary approach of interest to scientists and engineers working in a number of areas.

Chaos in Automatic Control

Chaos in Automatic Control PDF

Author: Wilfrid Perruquetti

Publisher: CRC Press

Published: 2018-10-03

Total Pages: 592

ISBN-13: 1420027859

DOWNLOAD EBOOK →

Chaotic behavior arises in a variety of control settings. In some cases, it is beneficial to remove this behavior; in others, introducing or taking advantage of the existing chaotic components can be useful for example in cryptography. Chaos in Automatic Control surveys the latest methods for inserting, taking advantage of, or removing chaos in a variety of applications. This book supplies the theoretical and pedagogical basis of chaos in control systems along with new concepts and recent developments in the field. Presented in three parts, the book examines open-loop analysis, closed-loop control, and applications of chaos in control systems. The first section builds a background in the mathematics of ordinary differential and difference equations on which the remainder of the book is based. It includes an introductory chapter by Christian Mira, a pioneer in chaos research. The next section explores solutions to problems arising in observation and control of closed-loop chaotic control systems. These include model-independent control methods, strategies such as H-infinity and sliding modes, polytopic observers, normal forms using homogeneous transformations, and observability normal forms. The final section explores applications in wireless transmission, optics, power electronics, and cryptography. Chaos in Automatic Control distills the latest thinking in chaos while relating it to the most recent developments and applications in control. It serves as a platform for developing more robust, autonomous, intelligent, and adaptive systems.

Controlling Chaos

Controlling Chaos PDF

Author: Huaguang Zhang

Publisher: Springer Science & Business Media

Published: 2009-06-18

Total Pages: 357

ISBN-13: 1848825234

DOWNLOAD EBOOK →

Controlling Chaos achieves three goals: the suppression, synchronisation and generation of chaos, each of which is the focus of a separate part of the book. The text deals with the well-known Lorenz, Rössler and Hénon attractors and the Chua circuit and with less celebrated novel systems. Modelling of chaos is accomplished using difference equations and ordinary and time-delayed differential equations. The methods directed at controlling chaos benefit from the influence of advanced nonlinear control theory: inverse optimal control is used for stabilization; exact linearization for synchronization; and impulsive control for chaotification. Notably, a fusion of chaos and fuzzy systems theories is employed. Time-delayed systems are also studied. The results presented are general for a broad class of chaotic systems. This monograph is self-contained with introductory material providing a review of the history of chaos control and the necessary mathematical preliminaries for working with dynamical systems.

Advanced Synchronization Control and Bifurcation of Chaotic Fractional-Order Systems

Advanced Synchronization Control and Bifurcation of Chaotic Fractional-Order Systems PDF

Author: Boulkroune, Abdesselem

Publisher: IGI Global

Published: 2018-05-11

Total Pages: 539

ISBN-13: 152255419X

DOWNLOAD EBOOK →

In the recent years, fractional-order systems have been studied by many researchers in the engineering field. It was found that many systems can be described more accurately by fractional differential equations than by integer-order models. Advanced Synchronization Control and Bifurcation of Chaotic Fractional-Order Systems is a scholarly publication that explores new developments related to novel chaotic fractional-order systems, control schemes, and their applications. Featuring coverage on a wide range of topics including chaos synchronization, nonlinear control, and cryptography, this publication is geared toward engineers, IT professionals, researchers, and upper-level graduate students seeking current research on chaotic fractional-order systems and their applications in engineering and computer science.

Chaos Control

Chaos Control PDF

Author: Guanrong Chen

Publisher: Springer Science & Business Media

Published: 2003-07-25

Total Pages: 392

ISBN-13: 9783540404057

DOWNLOAD EBOOK →

Chaos control refers to purposefully manipulating chaotic dynamical behaviors of some complex nonlinear systems. There exists no similar control theory-oriented book available in the market that is devoted to the subject of chaos control, written by control engineers for control engineers. World-renowned leading experts in the field provide their state-of-the-art survey about the extensive research that has been done over the last few years in this subject. The new technology of chaos control has major impact on novel engineering applications such as telecommunications, power systems, liquid mixing, internet technology, high-performance circuits and devices, biological systems modeling like the brain and the heart, and decision making. The book is not only aimed at active researchers in the field of chaos control involving control and systems engineers, theoretical and experimental physicists, and applied mathematicians, but also at a general audience in related fields.