The Highway Capacity Manual: A Conceptual and Research History Volume 2

The Highway Capacity Manual: A Conceptual and Research History Volume 2 PDF

Author: Elena S. Prassas

Publisher: Springer Nature

Published: 2020-01-08

Total Pages: 395

ISBN-13: 3030344800

DOWNLOAD EBOOK →

Since 1950, the Highway Capacity Manual has been a standard used in the planning, design, analysis, and operation of virtually any highway traffic facility in the United States. It has also been widely used around the globe and has inspired the development of similar manuals in other countries. This book is Volume II of a series on the conceptual and research origins of the methodologies found in the Highway Capacity Manual. It focuses on the most complex points in a traffic system: signalized and unsignalized intersections, and the concepts and methodologies developed over the years to model their operations. It also includes an overview of the fundamental concepts of capacity and level of service, particularly as applied to intersections. The historical roots of the manual and its contents are important to understanding current methodologies, and improving them in the future. As such, this book is a valuable resource for current and future users of the Highway Capacity Manual, as well as researchers and developers involved in advancing the state-of-the-art in the field.

Traffic Operations at Intersections

Traffic Operations at Intersections PDF

Author: Rod Troutbeck

Publisher:

Published: 2020-06-03

Total Pages: 250

ISBN-13:

DOWNLOAD EBOOK →

Traffic Operations at Intersections: Learning and Applying the Models and Methods of the Highway Capacity Manual Chapters on all-way stop-controlled intersections, two-way stop-controlled intersections, and signalized intersections Designed for practicing transportation engineers and university seniors and graduate students 11 simplified scenarios to open-up your understanding of the HCM 43 example calculations that are fully worked out and explained in detail 7 computational engines that allow you to see inside and then apply the models 138 figures to clearly illustrate concepts Additional problems online The models of the Highway Capacity Manual (HCM) are often the engineer's choice to analyze intersection performance. These models are complex, and nearly all transportation engineers use software implementations of these models to conduct their analyses. Software applications are powerful tools that help engineers solve problems. But these applications also serve as barriers to the understanding of the complex models embedded in the software. Our major objective in writing this book is to transform the "black box" of the HCM intersection models, and their software implementations, into a "clear box" that allows the engineer to better understand how these models work. We do this through the idea of the "simplified scenario." The eleven scenarios that we present are based on conditions greatly simplified from what you would normally see in the field. By focusing on one concept at a time, in the context of these simplified conditions, you will better understand the fundamentals of the HCM intersection models. You will then be able to apply these models to more complex intersections with skill, confidence, and insight.

Operation, Analysis, and Design of Signalized Intersections

Operation, Analysis, and Design of Signalized Intersections PDF

Author: Michael Kyte

Publisher: Createspace Independent Publishing Platform

Published: 2014-07-04

Total Pages: 0

ISBN-13: 9781500204365

DOWNLOAD EBOOK →

Before they begin their university studies, most students have experience with traffic signals, as drivers, pedestrians and bicycle riders. One of the tasks of the introductory course in transportation engineering is to portray the traffic signal control system in a way that connects with these experiences. The challenge is to reveal the system in a simple enough way to allow the student "in the door," but to include enough complexity so that this process of learning about signalized intersections is both challenging and rewarding. We have approached the process of developing this module with the following guidelines: * Focusing on the automobile user and pretimed signal operation allows the student to learn about fundamental principles of a signalized intersection, while laying the foundation for future courses that address other users (pedestrians, bicycle riders, public transit operators) and more advanced traffic control schemes such as actuated control, coordinated signal systems, and adaptive control. * Queuing models are presented as a way of learning about the fundamentals of traffic flow at a signalized intersection. A graphical approach is taken so that students can see how flow profile diagrams, cumulative vehicle diagrams, and queue accumulation polygons are powerful representations of the operation and performance of a signalized intersection. * Only those equations that students can apply with some degree of understanding are presented. For example, the uniform delay equation is developed and used as a means of representing intersection performance. However, the second and third terms of the Highway Capacity Manual delay equation are not included, as students will have no basis for understanding the foundation of these terms. * Learning objectives are clearly stated at the beginning of each section so that the student knows what is to come. At the end of each section, the learning objectives are reiterated along with a set of concepts that students should understand once they complete the work in the section. * Over 70 figures are included in the module. We believe that graphically illustrating basic concepts is an important way for students to learn, particularly for queuing model concepts and the development of the change and clearance timing intervals. * Over 50 computational problems and two field exercises are provided to give students the chance to test their understanding of the material. The sequence in which concepts are presented in this module, and the way in which more complex ideas build on the more fundamental ones, was based on our study of student learning in the introductory course. The development of each concept leads to an element in the culminating activity: the design and evaluation of a signal timing plan in section 9. For example, to complete step 1 of the design process, the student must learn about the sequencing and control of movements, presented in section 3 of this module. But to determine split times, step 6 of the design process, four concepts must be learned including flow (section 2), sequencing and control of movements (section 3), sufficiency of capacity (section 6), and cycle length and splits (section 8). Depending on the pace desired by the instructor, this material can be covered in 9 to 12 class periods.