Brouwer Degree

Brouwer Degree PDF

Author: George Dinca

Publisher: Springer Nature

Published: 2021-05-11

Total Pages: 462

ISBN-13: 303063230X

DOWNLOAD EBOOK →

This monograph explores the concept of the Brouwer degree and its continuing impact on the development of important areas of nonlinear analysis. The authors define the degree using an analytical approach proposed by Heinz in 1959 and further developed by Mawhin in 2004, linking it to the Kronecker index and employing the language of differential forms. The chapters are organized so that they can be approached in various ways depending on the interests of the reader. Unifying this structure is the central role the Brouwer degree plays in nonlinear analysis, which is illustrated with existence, surjectivity, and fixed point theorems for nonlinear mappings. Special attention is paid to the computation of the degree, as well as to the wide array of applications, such as linking, differential and partial differential equations, difference equations, variational and hemivariational inequalities, game theory, and mechanics. Each chapter features bibliographic and historical notes, and the final chapter examines the full history. Brouwer Degree will serve as an authoritative reference on the topic and will be of interest to professional mathematicians, researchers, and graduate students.

A Topological Introduction to Nonlinear Analysis

A Topological Introduction to Nonlinear Analysis PDF

Author: Robert F. Brown

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 151

ISBN-13: 147571209X

DOWNLOAD EBOOK →

"The book is highly recommended as a text for an introductory course in nonlinear analysis and bifurcation theory... reading is fluid and very pleasant... style is informal but far from being imprecise." -review of the first edition. New to this edition: additional applications of the theory and techniques, as well as several new proofs. This book is ideal for self-study for mathematicians and students interested in geometric and algebraic topology, functional analysis, differential equations, and applied mathematics.

Mapping Degree Theory

Mapping Degree Theory PDF

Author: Enrique Outerelo

Publisher: American Mathematical Soc.

Published: 2009-11-12

Total Pages: 258

ISBN-13: 0821849158

DOWNLOAD EBOOK →

This textbook treats the classical parts of mapping degree theory, with a detailed account of its history traced back to the first half of the 18th century. After a historical first chapter, the remaining four chapters develop the mathematics. An effort is made to use only elementary methods, resulting in a self-contained presentation. Even so, the book arrives at some truly outstanding theorems: the classification of homotopy classes for spheres and the Poincare-Hopf Index Theorem, as well as the proofs of the original formulations by Cauchy, Poincare, and others. Although the mapping degree theory you will discover in this book is a classical subject, the treatment is refreshing for its simple and direct style. The straightforward exposition is accented by the appearance of several uncommon topics: tubular neighborhoods without metrics, differences between class 1 and class 2 mappings, Jordan Separation with neither compactness nor cohomology, explicit constructions of homotopy classes of spheres, and the direct computation of the Hopf invariant of the first Hopf fibration. The book is suitable for a one-semester graduate course. There are 180 exercises and problems of different scope and difficulty.

Generalized Topological Degree and Semilinear Equations

Generalized Topological Degree and Semilinear Equations PDF

Author: Wolodymyr V. Petryshyn

Publisher: Cambridge University Press

Published: 1995-09-29

Total Pages: 252

ISBN-13: 0521444748

DOWNLOAD EBOOK →

This book describes many new results and extensions of the theory of generalized topological degree for densely defined A-proper operators and presents important applications, particularly to boundary value problems of nonlinear ordinary and partial differential equations that are intractable under any other existing theory. A-proper mappings arise naturally in the solution to an equation in infinite dimensional space via the finite dimensional approximation. The theory subsumes classical theory involving compact vector fields as well as the more recent theories of condensing vector-fields, strongly monotone, and strongly accretive maps. Researchers and graduate students in mathematics, applied mathematics, and physics who make use of nonlinear analysis will find this an important resource for new techniques.

Topology from the Differentiable Viewpoint

Topology from the Differentiable Viewpoint PDF

Author: John Willard Milnor

Publisher: Princeton University Press

Published: 1997-12-14

Total Pages: 80

ISBN-13: 9780691048338

DOWNLOAD EBOOK →

This elegant book by distinguished mathematician John Milnor, provides a clear and succinct introduction to one of the most important subjects in modern mathematics. Beginning with basic concepts such as diffeomorphisms and smooth manifolds, he goes on to examine tangent spaces, oriented manifolds, and vector fields. Key concepts such as homotopy, the index number of a map, and the Pontryagin construction are discussed. The author presents proofs of Sard's theorem and the Hopf theorem.

The Fundamental Theorem of Algebra

The Fundamental Theorem of Algebra PDF

Author: Benjamin Fine

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 220

ISBN-13: 1461219280

DOWNLOAD EBOOK →

The fundamental theorem of algebra states that any complex polynomial must have a complex root. This book examines three pairs of proofs of the theorem from three different areas of mathematics: abstract algebra, complex analysis and topology. The first proof in each pair is fairly straightforward and depends only on what could be considered elementary mathematics. However, each of these first proofs leads to more general results from which the fundamental theorem can be deduced as a direct consequence. These general results constitute the second proof in each pair. To arrive at each of the proofs, enough of the general theory of each relevant area is developed to understand the proof. In addition to the proofs and techniques themselves, many applications such as the insolvability of the quintic and the transcendence of e and pi are presented. Finally, a series of appendices give six additional proofs including a version of Gauss'original first proof. The book is intended for junior/senior level undergraduate mathematics students or first year graduate students, and would make an ideal "capstone" course in mathematics.

Introduction to Various Aspects of Degree Theory in Banach Spaces

Introduction to Various Aspects of Degree Theory in Banach Spaces PDF

Author: E. H. Rothe

Publisher: American Mathematical Soc.

Published: 1986-12-31

Total Pages: 250

ISBN-13: 0821827707

DOWNLOAD EBOOK →

Since its development by Leray and Schauder in the 1930's, degree theory in Banach spaces has proved to be an important tool in tackling many analytic problems, including boundary value problems in ordinary and partial differential equations, integral equations, and eigenvalue and bifurcation problems. With this volume E. H. Rothe provides a largely self-contained introduction to topological degree theory, with an emphasis on its function-analytical aspects. He develops the definition and properties of the degree as much as possible directly in Banach space, without recourse to finite-dimensional theory. A basic tool used is a homotopy theorem for certain linear maps in Banach spaces which allows one to generalize the distinction between maps with positive determinant and those with negative determinant in finite-dimensional spaces. Rothe's book is addressed to graduate students who may have only a rudimentary knowledge of Banach space theory. The first chapter on function-analytic preliminaries provides most of the necessary background. For the benefit of less experienced mathematicians, Rothe introduces the topological tools (subdivision and simplicial approximation, for example) only to the degree of abstraction necessary for the purpose at hand. Readers will gain insight into the various aspects of degree theory, experience in function-analytic thinking, and a theoretic base for applying degree theory to analysis. Rothe describes the various approaches that have historically been taken towards degree theory, making the relationships between these approaches clear. He treats the differential method, the simplicial approach introduced by Brouwer in 1911, the Leray-Schauder method (which assumes Brouwer's degree theory for the finite-dimensional space and then uses a limit process in the dimension), and attempts to establish degree theory in Banach spaces intrinsically, by an application of the differential method in the Banach space case.

A Combinatorial Introduction to Topology

A Combinatorial Introduction to Topology PDF

Author: Michael Henle

Publisher: Courier Corporation

Published: 1994-01-01

Total Pages: 340

ISBN-13: 9780486679662

DOWNLOAD EBOOK →

Excellent text covers vector fields, plane homology and the Jordan Curve Theorem, surfaces, homology of complexes, more. Problems and exercises. Some knowledge of differential equations and multivariate calculus required.Bibliography. 1979 edition.

Methods of Nonlinear Analysis

Methods of Nonlinear Analysis PDF

Author: Pavel Drabek

Publisher: Springer Science & Business Media

Published: 2013-01-18

Total Pages: 652

ISBN-13: 3034803877

DOWNLOAD EBOOK →

In this book, fundamental methods of nonlinear analysis are introduced, discussed and illustrated in straightforward examples. Each method considered is motivated and explained in its general form, but presented in an abstract framework as comprehensively as possible. A large number of methods are applied to boundary value problems for both ordinary and partial differential equations. In this edition we have made minor revisions, added new material and organized the content slightly differently. In particular, we included evolutionary equations and differential equations on manifolds. The applications to partial differential equations follow every abstract framework of the method in question. The text is structured in two levels: a self-contained basic level and an advanced level - organized in appendices - for the more experienced reader. The last chapter contains more involved material and can be skipped by those new to the field. This book serves as both a textbook for graduate-level courses and a reference book for mathematicians, engineers and applied scientists

Algebraic and Differential Topology of Robust Stability

Algebraic and Differential Topology of Robust Stability PDF

Author: Edmond A. Jonckheere

Publisher: Oxford University Press

Published: 1997-05-29

Total Pages: 625

ISBN-13: 019535768X

DOWNLOAD EBOOK →

In this book, two seemingly unrelated fields -- algebraic topology and robust control -- are brought together. The book develops algebraic/differential topology from an application-oriented point of view. The book takes the reader on a path starting from a well-motivated robust stability problem, showing the relevance of the simplicial approximation theorem and how it can be efficiently implemented using computational geometry. The simplicial approximation theorem serves as a primer to more serious topological issues such as the obstruction to extending the Nyquist map, K-theory of robust stabilization, and eventually the differential topology of the Nyquist map, culminating in the explanation of the lack of continuity of the stability margin relative to rounding errors. The book is suitable for graduate students in engineering and/or applied mathematics, academic researchers and governmental laboratories.