Bioreactors for Stem Cell Expansion and Differentiation

Bioreactors for Stem Cell Expansion and Differentiation PDF

Author: Joaquim M.S. Cabral

Publisher: CRC Press

Published: 2018-09-03

Total Pages: 279

ISBN-13: 0429841817

DOWNLOAD EBOOK →

An international team of investigators presents thought-provoking reviews of bioreactors for stem cell expansion and differentiation and provides cutting-edge information on different bioreactor systems. The authors offer novel insights into bioreactor-based culture systems specific for tissue engineering, including sophisticated and cost-effective manufacturing strategies geared to overcome technological shortcomings that currently preclude advances towards product commercialization. This book in the fields of stem cell expansion, bioreactors, bioprocessing, and bio and tissue engineering, gives the reader a full understanding of the state-of-art and the future of these fields. Key selling features: Describes various bioreactors or stem cell culturing systems Reviews methods for stem cell expansion and differentiation for neural, cardiac, hemopoietic, mesenchymal, hepatic and other tissues cell types Distinguishes different types of bioreactors intended for different operational scales of tissue engineering and cellular therapies Includes contributions from an international team of leaders in stem cell research

Development of Miniaturized Bioreactors for Stem Cell Culture

Development of Miniaturized Bioreactors for Stem Cell Culture PDF

Author: Mariam Sarvi

Publisher:

Published: 2014

Total Pages: 416

ISBN-13:

DOWNLOAD EBOOK →

Embryonic stem cells (ESCs) are pluripotent cells capable of indefinite self renewal in vitro while maintaining the ability to differentiate into cell types of all three germ layers. ESCs are outstanding options of in vitro cell models for regenerative medicine, functional genomics, human developmental biology and drug discovery study. Stem cell research is among the most promising fields of biotechnology, and which provides the potential of developing novel approaches to repair or replace damaged tissues and cells. The present day, exponentially growing effort of stem cell research emphasizes a major need for convergence of more efficient and appropriate laboratory technologies to sustain the growth, proliferation and differentiation potential of stem cells.Although so far, a variety of conventional bioreactors with different configurations (such as spinner flasks, rotary, perfusion bioreactor, etc.) have been designed and adapted for stem cell expansion and differentiation, bioreactors can be disadvantageous in bench-top research because they need large space, consume huge amount of reagents and need more time to operate and maintain (sterilizing, cleaning, assembling, and disassembling of the bioreactor components). The requirements for costly equipment and generating shear stress due to the fluid flow, and the lack of physical similarity between microenvironments of bioreactor and actual cell microenvironment, make using bioreactors undesirable.In tissue engineering, micro-scale technology is an approach that combines micro-techniques with materials science and surface engineering, and results in a profound exploration of the microenvironment where cells are embedded. These technologies are able to address some of the limitations imposed by conventional tissue engineering methods. Indeed, developing successful novel small-scale technologies for in vitro cultivation of different types of cells can assist in increasing our knowledge on conditions that control stem cell growth and differentiation and organ development. In fact, small scale bioreactors are miniaturized versions of conventional bioreactors, where high- throughput cell based assays can be carried out at low cost compared with their macro-scale counter- parts.The first aim of this thesis was to develop a disposable miniaturized bioreactor through a novel and inexpensive method for effective stem cell proliferation. To this end, an effective surface functionalization method was developed for enhancing the biocompatibility of a PDMS surface that is protein resistant while facilitating cell proliferation (expansion) and maintaining the pluripotency potential of cells. The micro-bioreactor was fabricated in the form of a fixed bed bioreactor with a microchannel reactor bed. The microchannel was functionalized to enable cell adhesion and resistance to protein adsorption. The functionalized surface was found to be biocompatible with cancer and embryonic stem cells (ESCs), and while facilitating cell proliferation.Differentiation of ESCs into a variety of cell types is an important characteristic of these types of cells, which is commonly achieved in vitro by spontaneously self-assembling in low adhesion culture conditions into 3D cell aggregates called embryoid bodies (EBs). Formation of EBs that simulates many of the characteristics of early embryonic development is considered as a vital step to induce differentiation of stem cells. Formation of three dimensional configurations of ESCs as EBs provides possibilities to mechanistically study early differentiation events of pluripotent cells. In fact, EB formation is of paramount importance for in vitro investigation of the embryonic development and differentiation of both the mouse and human ES cells.The second aim of this thesis was to introduce a novel concept of a miniaturized bioreactor made of liquid marble (LM). A novel application of liquid marbles for formation of embryoid bodies (EBs) was then presented. This study showed that the confined internal space of liquid marble, along with the porous and non-adhesive property of the highly hydrophobic liquid marble shell, can facilitate the formation of uniform EBs inside the liquid marbles. The efficiency of liquid marble-born-EBs compared to the liquid suspension (LS) technique as the chosen control method in terms of cell viability and EB uniformity revealed that cells in liquid marble are more viable than those in suspension. Measuring EB size distribution as an indicator of uniformity also confirmed that EBs obtained by the LM are morphologically more uniform and of a narrower size distribution compared to those formed in LS. The feasibility of using liquid marble bioreactors for cardiomyocyte differentiation of mouse ES (mES) cells after formation of EBs inside the liquid marble was further investigated. The results demonstrated that ES cells can differentiate into myocyte cells through the liquid marble as a facile, cost effective, and straightforward method. We proposed for the first time that liquid marbles greatly contribute to ES cardiac differentiation, which provides a new technology platform for ES biology and genetic studies.It is worth mentioning that although the majority of our knowledge in modern biology has been provided by classical two dimensional (2D) cell culture techniques, the most common negative aspects of these systems is deficiency of support from extra-cellular matrix, which represents an important role for cell growth and development. It is now well accepted that cells reside, proliferate, and differentiate in complex 3D microenvironments. The concept of using three dimensional (3D) biodegradable scaffolds as alternatives for extracellular matrix (ECM), which more closely reform cells' native structure, is an interesting area of study in current tissue engineering. Because of their unique function, stem cells need to reside in the specialized, 3D microenvironment that surrounds them in native tissues.The third section of this thesis (chapter 5) focuses on the investigating of the feasibility of forming embryoid bodies using a novel hydrogel as bioreactor embedding material. This hydrogel is porous and biodegradable and is prepared by modifying hydroxypropylcellulose (HPC), with bio-functional methacrylates (MA). Observation of EB formation inside hydrogel implied that the stem cells attached and penetrated to the pores, and proliferated well, while forming uniform EBs. Uniformity of EBs formed inside hydrogel, compared with those formed via liquid suspension (LS) method, as one of the most widely used EB formation techniques. It was observed that porous hydrogel allows the formation of more homogeneous EBs. It was found that cells inside hydrogel-born EBs are more viable compared to those formed in LS method. Expression of germ markers via quantitative PCR and immunostaining confirmed that the hydrogel-born EBs had expressed 3 germ layers with further in vitro differentiation potential. These EBs were allowed to differentiate further in hydrogel, where positive immunostaining of different cardiac markers and observation of beating EBs showed the potential of EBs to further differentiate into cardiac cells lineage.In summary, this thesis first presents a novel, facile and cost effective method via surface bio- functionalization of PDMS bioreactor for better stem cell adhesion and proliferation, and later introduces two novel methods to prepare bioreactor material, namely liquid marble and porous hydrogel (HPC-MA) for formation of embryoid bodies, which is considered as a critical step for in vitro differentiation in ESCs.

Bioreactor Systems for Tissue Engineering II

Bioreactor Systems for Tissue Engineering II PDF

Author: Cornelia Kasper

Publisher: Springer Science & Business Media

Published: 2010-10-03

Total Pages: 331

ISBN-13: 3642160506

DOWNLOAD EBOOK →

Alternative Sources of Adult Stem Cells: Human Amniotic Membrane, by S. Wolbank, M. van Griensven, R. Grillari-Voglauer, and A. Peterbauer-Scherb; * Mesenchymal Stromal Cells Derived from Human Umbilical Cord Tissues: Primitive Cells with Potential for Clinical and Tissue Engineering Applications, by P. Moretti, T. Hatlapatka, D. Marten, A. Lavrentieva, I. Majore, R. Hass and C. Kasper; * Isolation, Characterization, Differentiation, and Application of Adipose-Derived Stem Cells, by J. W. Kuhbier, B. Weyand, C. Radtke, P. M. Vogt, C. Kasper and K. Reimers; * Induced Pluripotent Stem Cells: Characteristics and Perspectives, by T. Cantz and U. Martin; * Induced Pluripotent Stem Cell Technology in Regenerative Medicine and Biology, by D. Pei, J. Xu, Q. Zhuang, H.-F. Tse and M. A. Esteban; * Production Process for Stem Cell Based Therapeutic Implants: Expansion of the Production Cell Line and Cultivation of Encapsulated Cells, by C. Weber, S. Pohl, R. Poertner, P. Pino-Grace, D. Freimark, C. Wallrapp, P. Geigle and P. Czermak; * Cartilage Engineering from Mesenchymal Stem Cells, by C. Goepfert, A. Slobodianski, A.F. Schilling, P. Adamietz and R. Poertner; * Outgrowth Endothelial Cells: Sources, Characteristics and Potential Applications in Tissue Engineering and Regenerative Medicine, by S. Fuchs, E. Dohle, M. Kolbe, C. J. Kirkpatrick; * Basic Science and Clinical Application of Stem Cells in Veterinary Medicine, by I. Ribitsch, J. Burk, U. Delling, C. Geißler, C. Gittel, H. Jülke, W. Brehm; * Bone Marrow Stem Cells in Clinical Application: Harnessing Paracrine Roles and Niche Mechanisms, by R. M. El Backly, R. Cancedda; * Clinical Application of Stem Cells in the Cardiovascular System, C. Stamm, K. Klose, Y.-H. Choi

Stem Cell Manufacturing

Stem Cell Manufacturing PDF

Author: Joaquim M.S. Cabral

Publisher: Elsevier

Published: 2016-07-24

Total Pages: 342

ISBN-13: 0444632662

DOWNLOAD EBOOK →

Stem Cell Manufacturing discusses the required technologies that enable the transfer of the current laboratory-based practice of stem cell tissue culture to the clinic environment as therapeutics, while concurrently achieving control, reproducibility, automation, validation, and safety of the process and the product. The advent of stem cell research unveiled the therapeutic potential of stem cells and their derivatives and increased the awareness of the public and scientific community for the topic. The successful manufacturing of stem cells and their derivatives is expected to have a positive impact in the society since it will contribute to widen the offer of therapeutic solutions to the patients. Fully defined cellular products can be used to restore the structure and function of damaged tissues and organs and to develop stem cell-based cellular therapies for the treatment of cancer and hematological disorders, autoimmune and other inflammatory diseases and genetic disorders. Presents the first ‘Flowchart‘ of stem cell manufacturing enabling easy understanding of the various processes in a sequential and coherent manner Covers all bioprocess technologies required for the transfer of the bench findings to the clinic including the process components: cell signals, bioreactors, modeling, automation, safety, etc. Presents comprehensive coverage of a true multidisciplinary topic by bringing together specialists in their particular area Provides the basics of the processes and identifies the issues to be resolved for large scale cell culture by the bioengineer Addresses the critical need in bioprocessing for the successful delivery of stem cell technology to the market place by involving professional engineers in sections of the book

Cell Engineering and Regeneration

Cell Engineering and Regeneration PDF

Author: Heinz Redl

Publisher: Springer

Published: 2017-02-16

Total Pages: 0

ISBN-13: 9783319088303

DOWNLOAD EBOOK →

This reference work presents the origins of cells for tissue engineering and regeneration, including primary cells, tissue-specific stem cells, pluripotent stem cells and trans-differentiated or reprogrammed cells. There is particular emphasis on current understanding of tissue regeneration based on embryology and evolution studies, including mechanisms of amphibian regeneration. The book covers the use of autologous versus allogeneic cell sources, as well as various procedures used for cell isolation and cell pre-conditioning , such as cell sorting, biochemical and biophysical pre-conditioning, transfection and aggregation. It also presents cell modulation using growth factors, molecular factors, epigenetic approaches, changes in biophysical environment, cellular co-culture and other elements of the cellular microenvironment. The pathways of cell delivery are discussed with respect to specific clinical situations, including delivery of ex vivo manipulated cells via local and systemic routes, as well as activation and migration of endogenous reservoirs of reparative cells. The volume concludes with an in-depth discussion of the tracking of cells in vivo and their various regenerative activities inside the body, including differentiation, new tissue formation and actions on other cells by direct cell-to-cell communication and by secretion of biomolecules.

Bioprocessing Technology for Production of Biopharmaceuticals and Bioproducts

Bioprocessing Technology for Production of Biopharmaceuticals and Bioproducts PDF

Author: Claire Komives

Publisher: John Wiley & Sons

Published: 2018-12-27

Total Pages: 288

ISBN-13: 1118361989

DOWNLOAD EBOOK →

Written for industrial and academic researchers and development scientists in the life sciences industry, Bioprocessing Technology for Production of Biopharmaceuticals and Bioproducts is a guide to the tools, approaches, and useful developments in bioprocessing. This important guide: • Summarizes state-of-the-art bioprocessing methods and reviews applications in life science industries • Includes illustrative case studies that review six milestone bio-products • Discuses a wide selection of host strain types and disruptive bioprocess technologies

Bioreactors for Tissue Engineering

Bioreactors for Tissue Engineering PDF

Author: Julian Chaudhuri

Publisher: Springer Science & Business Media

Published: 2005-10-18

Total Pages: 394

ISBN-13: 9781402037405

DOWNLOAD EBOOK →

Developments in tissue engineering for human medicine are increasing rapidly. Advances in stem cell biology, biomaterials science and scaffold design underpin this emerging science. An equally important facet of this field is the rational design and operation of bioreactors to control the nascent tissue growth. For the first time in a single volume, the design, characterisation and operation of the bioreactor system in which the tissue is grown is detailed. Bioreactors for Tissue Engineering presents an overall picture of the current state of knowledge in the engineering of bioreactors for several tissue types (bone, cartilage, vascular), addresses the issue of mechanical conditioning of the tissue, and describes the use of techniques such as MRI for monitoring tissue growth. This unique volume is dedicated to the fundamentals and application of bioreactor technology to tissue engineering products. Not only will it appeal to graduate students and experienced researchers in tissue engineering and regenerative medicine, but also to tissue engineers and culture technologists, academic and industrial chemical engineers, biochemical engineers and cell biologists who wish to understand the criteria used to design and develop novel systems for tissue growth in vitro.

Stem Cell Bioprocessing and Manufacturing

Stem Cell Bioprocessing and Manufacturing PDF

Author: Joaquim M. S. Cabral

Publisher: MDPI

Published: 2021-01-20

Total Pages: 170

ISBN-13: 3039430386

DOWNLOAD EBOOK →

The next healthcare revolution will apply regenerative medicines using human cells and tissues. The aim of the regenerative medicine approach is to create biological therapies or substitutes in vitro for the replacement or restoration of tissue function in vivo lost through failure or disease. However, whilst science has revealed the potential, and early products have shown the power of such therapies, there is an immediate and long-term need for expertise with the necessary skills to face the engineering and life science challenges before the predicted benefits in human healthcare can be realized. Specifically, there is a need for the development of bioprocess technology for the successful transfer of laboratory-based practice of stem cell and tissue culture to the clinic as therapeutics through the application of engineering principles and practices. This Special Issue of Bioengineering on Stem Cell Bioprocessing and Manufacturing addresses the central role in defining the engineering sciences of cell-based therapies, by bringing together contributions from worldwide experts on stem cell biology and engineering, bioreactor design and bioprocess development, scale-up, and manufacturing of stem cell-based therapies.

Stem Cell Systems Bioengineering

Stem Cell Systems Bioengineering PDF

Author: Tiago G. Fernandes

Publisher: Frontiers Media SA

Published: 2021-07-02

Total Pages: 214

ISBN-13: 2889668959

DOWNLOAD EBOOK →

Dr. Stephanie Willerth has a commercialization agreement with Aspect Biosystems with regards to bioprinting stem cell derived tissues. Dr. Yuguo Lei is a co-founder of CellGro Technologies, LLC, a company focusing on cell expansion technologies. Dr. Tiago Fernandes has no competing interests with regards to this Research Topic.

Mesenchymal Stem Cells - Basics and Clinical Application II

Mesenchymal Stem Cells - Basics and Clinical Application II PDF

Author: Birgit Weyand

Publisher: Springer

Published: 2014-07-08

Total Pages: 309

ISBN-13: 3642379443

DOWNLOAD EBOOK →

Engineered MSCs from Patient-Specific iPS Cells, by Irina Eberle, Mohsen Moslem, Reinhard Henschler, Tobias Cantz Fate of Intravenously Injected Mesenchymal Stem Cells and Significance for Clinical Application, by Beate Wagner, Reinhard Henschler The Implications of Stem Cell Applications for Diseases of the Respiratory System, by Mei Ling Lim, Philipp Jungebluth, Paolo Macchiarini Potential of Mesenchymal Stem Cell Applications in Plastic and Reconstructive Surgery, by Birgit Weyand, Peter M. Vogt General Principles for the Regeneration of Bone and Cartilage, by Michael Jagodzinski, C. Haasper Adult Mesenchymal Stem Cells Explored in the Dental Field, by K. M. Fawzy El-Sayed, C. Dörfer, F. Fändrich, F. Gieseler, M. H. Moustafa, H. Ungefroren Mesenchymal Stem Cell Therapy and Lung Diseases, by Khondoker M. Akram, Sohel Samad, Monica Spiteri, Nicholas R. Forsyth Mesenchymal Stem Cells as Cellular Immunotherapeutics in Allogeneic Hematopoietic Stem Cell Transplantation, by Claudia Papewalis, Daniela Topolar, Barbara Götz, Stefan Schönberger, Dagmar Dilloo New Cell-Based Therapy Paradigm: Induction of Bone Marrow-Derived Multipotent Mesenchymal Stromal Cells into Pro-Inflammatory MSC1 and Anti-inflammatory MSC2 Phenotypes, by Aline M. Betancourt Interactions Between Mesenchymal Stem Cells and Dendritic Cells, by Grazia Maria Spaggiari, Lorenzo Moretta MSC and Tumors: Homing, Differentiation, and Secretion Influence Therapeutic Potential, by Naomi D’souza, Jorge Sans Burns, Giulia Grisendi, Olivia Candini, Elena Veronesi, Serena Piccinno, Edwin M. Horwitz, Paolo Paolucci, Pierfranco Conte, Massimo Dominici Sources of Mesenchymal Stem Cells: Current and Future Clinical Use, by Michela Pozzobon, Martina Piccoli, Paolo De Coppi Role of the EU Framework in Regulation of Stem Cell-Based Products, by Giovanni Migliaccio, Cristina Pintus