Biomaterials in Regenerative Medicine and the Immune System

Biomaterials in Regenerative Medicine and the Immune System PDF

Author: Laura Santambrogio

Publisher: Springer

Published: 2015-09-04

Total Pages: 283

ISBN-13: 3319180452

DOWNLOAD EBOOK →

The generation of tridimensional tissues, assembled from scaffolding materials populated with biologically functional cells, is the great challenge and hope of tissue bioengineering and regenerative medicine. The generation of biomaterials capable of harnessing the immune system has been particularly successful. This book provides a comprehensive view of how immune cells can be manipulated to suppresses inflammation, deliver vaccines, fight cancer cells, promote tissue regeneration or inhibit blood clotting and bacterial infections by functionally engineered biomaterials. However, long-lived polymers, such as those employed in orthopedic surgery or vascular stents, can often induce an immune reaction to their basic components. As a result, this book is also an important step towards coming to understand how to manipulate biomaterials to optimize their beneficial effects and downplay detrimental immune responses.

Immunomodulatory Biomaterials

Immunomodulatory Biomaterials PDF

Author: Stephen F. Badylak

Publisher: Woodhead Publishing

Published: 2021-07-30

Total Pages: 296

ISBN-13: 0128214562

DOWNLOAD EBOOK →

Biomaterials have existed for millennia as mechanical replacement structures following disease or injury. Biomaterial design has changed markedly from structural support with an “inert immune profile as the primary objective to designs that elicit an integrative local tissue response and a pro-repair immune cell phenotype. Immunomodulatory Biomaterials: Regulating the Immune Response with Biomaterials to Affect Clinical Outcome offers a single, comprehensive reference on biomaterials for modulation of the host response, for materials scientists, tissue engineers and those working in regenerative medicine. This book details methods, materials and strategies designed to regulate the host immune response following surgical implantation and thus facilitate specific local cell infiltration and tissue deposition. There has been a dramatic transformation in our understanding of the role of the immune system, both innate and adaptive; these changes include recognition of the plasticity of immune cells, especially macrophages, cross-talk between the immune system and stem cells, and the necessity for in situ transition between inflammatory and regulatory immune cell phenotypes. The exploitation of these findings and the design and manufacture of new biomaterials is occurring at an astounding pace. There is currently no book directed at the interdisciplinary principles guiding the design, manufacture, testing, and clinical translation of biomaterials that proactively regulate the host tissue immune response. The challenge for academia, industry, and regulatory agencies to encourage innovation while assuring safety and maximizing efficacy has never been greater. Given the highly interdisciplinary requirements for the design, manufacture and use of immunomodulatory biomaterials, this book will prove a useful single resource across disciplines. Holistically covers the design, manufacture, testing, and clinical translation of biomaterials that proactively regulate the host tissue immune response Provides a single reference for understanding and utilizing the host response in biomaterials design An international collaboration of leading researchers in the field offering a novel insight into this fast-growing area

Biomaterials and Immune Response

Biomaterials and Immune Response PDF

Author: Nihal Engin Vrana

Publisher: CRC Press

Published: 2018-07-20

Total Pages: 249

ISBN-13: 1351377566

DOWNLOAD EBOOK →

The interactions of the biomaterials with the host immune system is crucial for their functionality. This book aims to provide the reader with a better understanding of the role of the immune system in biomaterial applications. For this end, the book has dedicated chapters for i) explaining immune cells taking part in immune response to biomaterials/immune systems interface; ii) the effect of biomaterial shape, form and physicochemical properties on the response of immune system; iii) biofilm formation on implanted materials as a failure of immune system/biomaterial interactions; iv) tissue-specific effects of immune response and its consequences for tissue engineering and regenerative medicine; v) immune reaction in a clinical context (periodontology). In the field of biomaterials there are significant advances in using immunomodulation techniques to improve the success rates of implantable materials. For better understanding of such techniques it is required to have a full grasp of the biomaterial–immune system interactions. This would greatly enhance the understanding of why the human body reacts to implants in a certain way and how to improve the clinical outcomes by developing immune-instructive biomaterials. Provides keen insight into biomaterial–immune cell interactions Presents an explanation of state-of-the-art methodologies in immunomodulation Offers a concise and simple-to-understand treatment of biomaterial–immune cell interactions for materials scientists in a biology heavy topic Explores a comprehensive overview of biomaterial related complications Provides extensive references at the end of each chapter to enhance study for this very hot research area

Host Response to Biomaterials

Host Response to Biomaterials PDF

Author: Stephen F. Badylak

Publisher: Academic Press

Published: 2015-05-08

Total Pages: 470

ISBN-13: 0128005009

DOWNLOAD EBOOK →

Host Response to Biomaterials: The Impact of Host Response on Biomaterial Selection explains the various categories of biomaterials and their significance for clinical applications, focusing on the host response to each biomaterial. It is one of the first books to connect immunology and biomaterials with regard to host response. The text also explores the role of the immune system in host response, and covers the regulatory environment for biomaterials, along with the benefits of synthetic versus natural biomaterials, and the transition from simple to complex biomaterial solutions. Fields covered include, but are not limited to, orthopaedic surgery, dentistry, general surgery, neurosurgery, urology, and regenerative medicine. Explains the various categories of biomaterials and their significance for clinical applications Contains a range of extensive coverage, including, but not limited to, orthopedic, surgery, dental, general surgery, neurosurgery, lower urinary tract, and regenerative medicine Includes regulations regarding combination devices

The Immune Response to Implanted Materials and Devices

The Immune Response to Implanted Materials and Devices PDF

Author: Bruna Corradetti

Publisher: Springer

Published: 2016-11-30

Total Pages: 241

ISBN-13: 3319454331

DOWNLOAD EBOOK →

This book provides a comprehensive overview of the cascade of events activated in the body following the implant of biomaterials and devices. It is one of the first books to shed light on the role of the host immune response on therapeutic efficacy, and reviews the state-of-the-art for both basic science and medical applications. The text examines advantages and disadvantages of the use of synthetic versus natural biomaterials. Particular emphasis is placed on the role of biomimicry in the development of smart strategies able to modulate infiltrating immune cells, thus reducing side effects (such as acute and chronic inflammation, fibrosis and/or implant rejection) and improving the therapeutic outcome (healing, tissue restoration). Current cutting-edge approaches in tissue engineering, regenerative medicine, and nanomedicine offer the latest insights into the role immunomodulation in improving tolerance during tissue transplant in the treatment of orthopaedic, pancreatic, and hepatic diseases. "Immune Response to Implanted Materials and Devices" is intended for an audience of graduate students and professional researchers in both academia and industry interested in the development of smart strategies, which are able to exploit the self-healing properties of the body and achieve functional tissue restoration.

Cellular Response to Biomaterials

Cellular Response to Biomaterials PDF

Author: Lucy Di Silvio

Publisher: Elsevier

Published: 2008-12-22

Total Pages: 649

ISBN-13: 184569547X

DOWNLOAD EBOOK →

The response of cells to biomaterials is critical in medical devices. Traditionally inert biomaterials were used to minimise the reaction in cells in contact with the material. However, it has been realised that specific cell responses may be beneficial in such areas as encouraging adhesion, healing or cell multiplication. Cellular response to biomaterials discusses the response of cells to a wide range of biomaterials targeted at specific medical applications. Part one discusses cell responses to a variety of polymers and ceramics with chapters on such topics as degradable polymers and biocompatibility. Part two covers cell responses and regenerative medicine with coverage of themes such as vascular grafts, nerve repair and Bioglass®. Part three examines the effect of surfaces and proteins on cell response. Specific chapters review nano-engineered surfaces, the influence of plasma proteins on bone cell adhesion and surface modification of titanium implants. With its distinguished editor and team of international contributors, Cellular response to biomaterials is an essential read for those researching or studying medical devices in industry and academia. Examines the response of cells to a wide range of biomaterials targeted at specific medical applications Discusses cell responses and regenerative medicine with specific chapters on vascular grafts and nerve repair Assesses the effect of surfaces and proteins on cell response including the influence of plasma proteins on cell adhesion and surface modification of titanium implants

Biosurfaces

Biosurfaces PDF

Author: Kantesh Balani

Publisher: John Wiley & Sons

Published: 2015-01-23

Total Pages: 465

ISBN-13: 111895064X

DOWNLOAD EBOOK →

Ideal as a graduate textbook, this title is aimed at helping design effective biomaterials, taking into account the complex interactions that occur at the interface when a synthetic material is inserted into a living system. Surface reactivity, biochemistry, substrates, cleaning, preparation, and coatings are presented, with numerous case studies and applications throughout. Highlights include: Starts with concepts and works up to real-life applications such as implantable devices, medical devices, prosthetics, and drug delivery technology Addresses surface reactivity, requirements for surface coating, cleaning and preparation techniques, and characterization Discusses the biological response to coatings Addresses biomaterial-tissue interaction Incorporates nanomechanical properties and processing strategies

Regenerative Medicine Applications in Organ Transplantation

Regenerative Medicine Applications in Organ Transplantation PDF

Author: Giuseppe Orlando

Publisher: Academic Press

Published: 2013-10-11

Total Pages: 1050

ISBN-13: 012398520X

DOWNLOAD EBOOK →

Regenerative Medicine Applications in Organ Transplantation illustrates exactly how these two fields are coming together and can benefit one another. It discusses technologies being developed, methods being implemented, and which of these are the most promising. The text encompasses tissue engineering, biomaterial sciences, stem cell biology, and developmental biology, all from a transplant perspective. Organ systems considered include liver, renal, intestinal, pancreatic, and more. Leaders from both fields have contributed chapters, clearly illustrating that regenerative medicine and solid organ transplantation speak the same language and that both aim for similar medical outcomes. The overall theme of the book is to provide insight into the synergy between organ transplantation and regenerative medicine. Recent groundbreaking achievements in regenerative medicine have received unprecedented coverage by the media, fueling interest and enthusiasm in transplant clinicians and researchers. Regenerative medicine is changing the premise of solid organ transplantation, requiring transplantation investigators to become familiar with regenerative medicine investigations that can be extremely relevant to their work. Similarly, regenerative medicine investigators need to be aware of the needs of the transplant field to bring these two fields together for greater results. Bridges the gap between regenerative medicine and solid organ transplantation and highlights reasons for collaboration Explains the importance and future potential of regenerative medicine to the transplant community Illustrates to regenerative medicine investigators the needs of the transplant discipline to drive and guide investigations in the most promising directions

An Introduction to Tissue-Biomaterial Interactions

An Introduction to Tissue-Biomaterial Interactions PDF

Author: Kay C. Dee

Publisher: John Wiley & Sons

Published: 2003-04-14

Total Pages: 250

ISBN-13: 0471461121

DOWNLOAD EBOOK →

An Introduction to Tissue-Biomaterial Interactions acquaints an undergraduate audience with the fundamental biological processes that influence these sophisticated, cutting-edge procedures. Chapters one through three provide more detail about the molecular-level events that happen at the tissue-implant interface, while chapters four through ten explore selected material, biological, and physiological consequences of these events. The importance of the body’s wound-healing response is emphasized throughout. Specific topics covered include:Structure and properties of biomaterials Proteins Protein-surface interactions Blood-biomaterial interactions Inflammation and infection The immune system Biomaterial responses to implantation Biomaterial surface engineering Intimal hyperplasia and osseointegration as examples of tissue-biomaterial interactions The text also provides extensive coverage of the three pertinent interfaces between the body and the biomaterial, between the body and the living cells, and between the cells and the biomaterial that are critical in the development of tissue-engineered products that incorporate living cells within a biomaterial matrix. Ideal for a one-semester, biomedical engineering course, An Introduction to Tissue-Biomaterial Interactions provides a solid framework for understanding today’s and tomorrow’s implantable biomedical devices.

Biomaterials and Tissue Engineering

Biomaterials and Tissue Engineering PDF

Author: Donglu Shi

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 254

ISBN-13: 366206104X

DOWNLOAD EBOOK →

The current interest in developing novel materials has motivated an increasing need for biological and medical studies in a variety of dinical applications. Indeed, it is dear that to achieve the requisite mechanical, chemical and biomedical properties, especially for new bioactive materials, it is necessary to develop novel synthesis routes. The tremendous success of materials science in developing new biomaterials and fostering technological innovation arises from its focus on interdisciplinary research and collaboration between materials and medical sciences. Materials scientists seek to relate one natural phenomenon to the basic structures of the materials and to recognize the causes and effects of the phenomena. In this way, they have developed explanations for the changing of the properties, the reactions of the materials to the environment, the interface behaviors between the artificial materials and human tissue, the time effects on the materials, and many other natural occurrences. By the same means, medical scientists have also studied the biological and medical effects of these materials, and generated the knowledge needed to produce useful medical devices. The concept of biomaterials is one of the most important ideas ever generated by the application of materials science to the medical field. In traditional materials research, interest focuses primarilyon the synthesis , structure, and mechanical properties of materials commonly used for structural purposes in industry, for instance in mechanical parts of machinery.