Biomaterials and Engineering for Implantology

Biomaterials and Engineering for Implantology PDF

Author: Yoshiki Oshida

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2022-02-07

Total Pages: 562

ISBN-13: 3110740230

DOWNLOAD EBOOK →

Biomaterials are composed of metallic materials, ceramics, polymers, composites and hybrid materials. Biomaterials used in human beings require safety regulations, toxicity, allergic reaction, etc. When used as implantable materials their biological compatibility, biomechanical compatibility, and morphological compatibility must be acessed. This book explores the design and requirements of biomaterials for the use in implantology.

Mechanics of Biomaterials

Mechanics of Biomaterials PDF

Author: Lisa A. Pruitt

Publisher: Cambridge University Press

Published: 2011-10-20

Total Pages: 699

ISBN-13: 0521762219

DOWNLOAD EBOOK →

Combining materials science, mechanics, implant design and clinical applications, this self-contained text provides a complete grounding to the field.

Introductory Biomaterials

Introductory Biomaterials PDF

Author: Lia Stanciu

Publisher: Academic Press

Published: 2021-09-23

Total Pages: 369

ISBN-13: 0128095245

DOWNLOAD EBOOK →

Introductory Biomaterials enables undergraduate students in Biomedical, Chemical, Materials and other relevant Engineering disciplines to become familiar with the key concepts of Biomaterials principles: biocompatibility, structure-property-applications relationships, mechanical response of natural tissues, and cellular pathways for tissue-material ingrowth. Written in a clear, concise manner that weds theory with applications, this book helps students to understand the often intricate relationships between materials the implant devices that are made from them, and how the human body reacts to them. The book includes such concepts as requirements for metals, alloys, and ceramic materials to be used in load bearing implants (corrosion concepts, stress shielding, mechanical properties, composition), what properties of polymers impact their use in medicine (leaching and swelling, creep and stress relaxation); the tissue response to biomaterials, concepts related to drug delivery applications (polymer degradation, encapsulation), and tissue engineering (scaffold porosity, diffusion of nutrients, mechanical properties). Begins with structure-properties, followed immediately by their impact on actual biomaterials classes and devices, thus directly relating theory to applications (e.g. polymers to polymeric stents; metals to fracture fixation devices) Explains concepts in a clear, progressive manner, with numerous examples and figures to enhance student learning Covers all key biomaterials classes: metallic, ceramic, polymeric, composite and biological Includes a timely chapter on medical device regulation

Biomaterials

Biomaterials PDF

Author: Roderic S. Lakes

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 400

ISBN-13: 1475721560

DOWNLOAD EBOOK →

This book is intended as a general introduction to the uses of artificial materials in the human body for the purposes of aiding healing, correcting deformities, and restoring lost function. It is an outgrowth of an undergraduate course for senior students in biomedical engineering, and it is offered as a text to be used in such courses. Topics include biocompatibility, techniques to minimize cor rosion or other degradation of implant materials, principles of materials science as it relates to the use of materials in the body, and specific uses of materials in various tissues and organs. It is expected that the student will have successively completed elementary courses in the mechanics of deformable bodies and in anatomy and physiology, and preferably also an introductory course in materials science prior to undertaking a course in biomaterials. Many quantitative examples are included as exercises for the engineering student. We recognize that many of these involve unrealistic simplifications and are limited to simple mechanical or chemical aspects of the implant problem. We offer as an apology the fact that biomaterials engineering is still to a great extent an empirical discipline that is complicated by many unknowns associated with the human body. In recognition of that fact, we have endeavored to describe both the successes and the failures in the use of materials in the human body. Also included are many photographs and illustrations of implants and devices as an aid to visualization.

Biomaterials Science and Engineering

Biomaterials Science and Engineering PDF

Author: Joon B. Park

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 464

ISBN-13: 1461327695

DOWNLOAD EBOOK →

This book is written for those who would like to advance their knowledge beyond an introductory level of biomaterials or materials science and engineering. This requires one to understand more fully the science of materials, which is, of course, the foundation of biomaterials. The subject matter of this book may be divided into three parts: (1) fundamental structure-property relationships of man-made materials (Chapters 2-5) and natural biological materials, including biocompatibility (Chapters 6 and 7); (2) metallic, ceramic, and polymeric implant materials (Chapters 8-10); and (3) actual prostheses (Chapters 11 and 12). This manuscript was initially organized at Clemson University as classnotes for an introductory graduate course on biomaterials. Since then it has been revised and corrected many times based on experience with graduate students at Clemson and at Tulane University, where I taught for two years, 1981-1983, before joining the University of Iowa. I would like to thank the many people who helped me to finish this book; my son Y oon Ho, who typed all of the manuscript into the Apple Pie word processor; my former graduate students, M. Ackley Loony, W. Barb, D. N. Bingham, D. R. Clarke, J. P. Davies, M. F. DeMane, B. J. Kelly, K. W. Markgraf, N. N. Salman, W. J. Whatley, and S. o. Young; and my colleagues, Drs. W. Cooke, D. D. Moyle (Clemson G. H. Kenner (University of Utah), F. University), W. C. Van Buskirk (Tulane University), and Y.

Biomaterials

Biomaterials PDF

Author: Rosario Pignatello

Publisher: BoD – Books on Demand

Published: 2011-11-14

Total Pages: 506

ISBN-13: 9533074183

DOWNLOAD EBOOK →

These contribution books collect reviews and original articles from eminent experts working in the interdisciplinary arena of biomaterial development and use. From their direct and recent experience, the readers can achieve a wide vision on the new and ongoing potentialities of different synthetic and engineered biomaterials. Contributions were selected not based on a direct market or clinical interest, but based on results coming from very fundamental studies. This too will allow to gain a more general view of what and how the various biomaterials can do and work for, along with the methodologies necessary to design, develop and characterize them, without the restrictions necessarily imposed by industrial or profit concerns. The chapters have been arranged to give readers an organized view of this research area. In particular, this book contains 25 chapters related to recent researches on new and known materials, with a particular attention to their physical, mechanical and chemical characterization, along with biocompatibility and hystopathological studies. Readers will be guided inside the range of disciplines and design methodologies used to develope biomaterials possessing the physical and biological properties needed for specific medical and clinical applications.

Dental Implants and Bone Grafts Materials and Biological Issues

Dental Implants and Bone Grafts Materials and Biological Issues PDF

Author: Hamdam Alghamdi

Publisher: Woodhead Publishing

Published: 2019-10-15

Total Pages: 368

ISBN-13: 0081024789

DOWNLOAD EBOOK →

Dental Implants and Bone Grafts: Materials and Biological Issues brings together cutting-edge research to provide detailed coverage of biomaterials for alveolar bone replacement and reconstruction, enabling scientists and clinicians to gain a thorough knowledge of advances and applications in this field. As tooth loss and alveolar bony defects are common and pose a significant health problem in dental clinics, this book deals with timely topics, including alveolar bone structures and properties, mechanical function, pathological changes, material issues, reviews of biomaterials and tissue engineering for dental implants, design and surface modification, biological interaction and biocompatibility of dental implants, and new frontiers. This book is a highly valuable resource for scientists, clinicians and implantologists interested in the complex alveolar bone system and biomaterial and regenerative strategies for its reconstruction. Focuses on the structure, function and pathology of alveolar bone system Considers the issues involved in selecting alveolar bone biomaterials (dental implants and bone grafts) Discusses the requirements for optimal dental implant osseointegration and alveolar bone replacements/reconstruction Explains the biological basis of interactions between alveolar bone and biomaterials

Biomaterials and Medical Devices

Biomaterials and Medical Devices PDF

Author: Ferdyansyah Mahyudin

Publisher: Springer

Published: 2016-02-26

Total Pages: 242

ISBN-13: 3319148451

DOWNLOAD EBOOK →

This book presents an introduction to biomaterials with the focus on the current development and future direction of biomaterials and medical devices research and development in Indonesia. It is the first biomaterials book written by selected academic and clinical experts experts on biomaterials and medical devices from various institutions and industries in Indonesia. It serves as a reference source for researchers starting new projects, for companies developing and marketing products and for governments setting new policies. Chapter one covers the fundamentals of biomaterials, types of biomaterials, their structures and properties and the relationship between them. Chapter two discusses unconventional processing of biomaterials including nano-hybrid organic-inorganic biomaterials. Chapter three addresses biocompatibility issues including in vitro cytotoxicity, genotoxicity, in vitro cell models, biocompatibility data and its related failure. Chapter four describes degradable biomaterial for medical implants, which include biodegradable polymers, biodegradable metals, degradation assessment techniques and future directions. Chapter five focuses on animal models for biomaterial research, ethics, care and use, implantation study and monitoring and studies on medical implants in animals in Indonesia. Chapter six covers biomimetic bioceramics, natural-based biocomposites and the latest research on natural-based biomaterials in Indonesia. Chapter seven describes recent advances in natural biomaterial from human and animal tissue, its processing and applications. Chapter eight discusses orthopedic applications of biomaterials focusing on most common problems in Indonesia, and surgical intervention and implants. Chapter nine describes biomaterials in dentistry and their development in Indonesia.

Engineering Materials for Biomedical Applications

Engineering Materials for Biomedical Applications PDF

Author: Swee Hin Teoh

Publisher: World Scientific

Published: 2004

Total Pages: 347

ISBN-13: 9812560610

DOWNLOAD EBOOK →

The success of any implant or medical device depends very much on the biomaterial used. Synthetic materials (such as metals, polymers and composites) have made significant contributions to many established medical devices. The aim of this book is to provide a basic understanding on the engineering and processing aspects of biomaterials used in medical applications. Of paramount importance is the tripartite relationship between material properties, processing methods and design. As the target audiences cover a wide interdisciplinary field, each chapter is written with a detailed background so that audience of another discipline will be able to understand. For the more knowledgeable reader, a detailed list of references is included.

Biomaterials Science

Biomaterials Science PDF

Author: Yitzhak Rosen

Publisher: CRC Press

Published: 2012-06-06

Total Pages: 328

ISBN-13: 1439804044

DOWNLOAD EBOOK →

"This book is essential when designing, developing and studying biomedical materials.... provides an excellent review—from a patient, disease, and even genetic point of view—of materials engineering for the biomedical field. ... This well presented book strongly insists on how the materials can influence patients’ needs, the ultimate drive for biomedical engineering. ...[presents an] Interesting and innovative review from a patient focus perspective—the book emphasizes the importance of the patients, which is not often covered in other biomedical material’s books." —Fanny Raisin-Dadre, BioInteractions Ltd., Berkshire, England Going far beyond the coverage in most standard books on the subject, Biomaterials Science: An Integrated Clinical and Engineering Approach offers a solid overview of the use of biomaterials in medical devices, drug delivery, and tissue engineering. Combining discussion of materials science and engineering perspectives with clinical aspects, this book emphasizes integration of clinical and engineering approaches. In particular, it explores various applications of biomaterials in fields including tissue engineering, neurosurgery, hemocompatibility, BioMEMS, nanoparticle-based drug delivery, dental implants, and obstetrics/gynecology. The book engages those engineers and physicians who are applying biomaterials at various levels to: Increase the rate of successful deployment of biomaterials in humans Lower the side-effects of such a deployment in humans Accumulate knowledge and experience for improving current methodologies Incorporate information and understanding relevant to future challenges, such as permanent artificial organ transplants Using a variety of contributors from both the clinical and engineering sides of the fields mentioned above, this book stands apart by emphasizing a need for the often lacking approach that integrates these two equally important aspects.