An Introduction to Biological Membranes

An Introduction to Biological Membranes PDF

Author: William Stillwell

Publisher: Elsevier

Published: 2016-06-30

Total Pages: 590

ISBN-13: 0444637907

DOWNLOAD EBOOK →

Introduction to Biological Membranes: Composition, Structure and Function, Second Edition is a greatly expanded revision of the first edition that integrates many aspects of complex biological membrane functions with their composition and structure. A single membrane is composed of hundreds of proteins and thousands of lipids, all in constant flux. Every aspect of membrane structural studies involves parameters that are very small and fast. Both size and time ranges are so vast that multiple instrumentations must be employed, often simultaneously. As a result, a variety of highly specialized and esoteric biochemical and biophysical methodologies are often utilized. This book addresses the salient features of membranes at the molecular level, offering cohesive, foundational information for advanced undergraduate students, graduate students, biochemists, and membranologists who seek a broad overview of membrane science. Significantly expanded coverage on function, composition, and structure Brings together complex aspects of membrane research in a universally understandable manner Features profiles of membrane pioneers detailing how contemporary studies originated Includes a timeline of important discoveries related to membrane science

An Introduction to Biological Membranes

An Introduction to Biological Membranes PDF

Author: William Stillwell

Publisher: Newnes

Published: 2013-04-20

Total Pages: 378

ISBN-13: 0080931286

DOWNLOAD EBOOK →

An Introduction to Biological Membranes: From Bilayers to Rafts covers many aspects of membrane structure/function that bridges membrane biophysics and cell biology. Offering cohesive, foundational information, this publication is valuable for advanced undergraduate students, graduate students and membranologists who seek a broad overview of membrane science. Brings together different facets of membrane research in a universally understandable manner Emphasis on the historical development of the field Topics include membrane sugars, membrane models, membrane isolation methods, and membrane transport.

Physics of Biological Membranes

Physics of Biological Membranes PDF

Author: Patricia Bassereau

Publisher: Springer

Published: 2018-12-30

Total Pages: 623

ISBN-13: 3030006301

DOWNLOAD EBOOK →

This book mainly focuses on key aspects of biomembranes that have emerged over the past 15 years. It covers static and dynamic descriptions, as well as modeling for membrane organization and shape at the local and global (at the cell level) scale. It also discusses several new developments in non-equilibrium aspects that have not yet been covered elsewhere. Biological membranes are the seat of interactions between cells and the rest of the world, and internally, they are at the core of complex dynamic reorganizations and chemical reactions. Despite the long tradition of membrane research in biophysics, the physics of cell membranes as well as of biomimetic or synthetic membranes is a rapidly developing field. Though successful books have already been published on this topic over the past decades, none include the most recent advances. Additionally, in this domain, the traditional distinction between biological and physical approaches tends to blur. This book gathers the most recent advances in this area, and will benefit biologists and physicists alike.

The Structure of Biological Membranes

The Structure of Biological Membranes PDF

Author: Philip L. Yeagle

Publisher: CRC Press

Published: 2011-07-18

Total Pages: 398

ISBN-13: 1439809585

DOWNLOAD EBOOK →

Biological membranes provide the fundamental structure of cells and viruses. Because much of what happens in a cell or in a virus occurs on, in, or across biological membranes, the study of membranes has rapidly permeated the fields of biology, pharmaceutical chemistry, and materials science. The Structure of Biological Membranes, Third Edition pro

Biological Membranes

Biological Membranes PDF

Author: Kenneth M. Merz

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 596

ISBN-13: 1468485806

DOWNLOAD EBOOK →

The interface between a living cell and the surrounding world plays a critical role in numerous complex biological processes. Sperm/egg fusion, virus/cell fusion, exocytosis, endocytosis, and ion permeation are a few examples of processes involving membranes. In recent years, powerful tools such as X-ray crystal lography, electron microscopy, nuclear magnetic resonance, and infra-red and Raman spectroscopy have been developed to characterize the structure and dy namics of biomembranes. Despite this progress, many of the factors responsible for the function of biomembranes are still not well understood. The membrane is a very complicated supramolecular liquid-crystalline structure that is largely composed of lipids, forming a bilayer, to which proteins and other biomolecules are anchored. Often, the lipid bilayer environment is pictured as a hydropho bic structureless slab providing a thermodynamic driving force to partition the amino acids of a membrane protein according to their solubility. However, much of the molecular complexity of the phospholipid bilayer environment is ignored in such a simplified view. It is likely that the atomic details of the polar head group region and the transition from the bulk water to the hydrophobic core of the membrane are important. An understanding of the factors responsible for the function of biomembranes thus requires a better characterization at the molec ular level of how proteins interact with lipid molecules, of how lipids affect protein structure and of how lipid molecules might regulate protein function.

Permeability of Biological Membranes

Permeability of Biological Membranes PDF

Author: Gaspar Banfalvi

Publisher: Springer

Published: 2018-03-30

Total Pages: 0

ISBN-13: 9783319802718

DOWNLOAD EBOOK →

This book deals with biological membranes, focuses on permeabilization and pays particular attention to reversible permeabilization to maintain the viability and physiological conditions of the cells. Selective permeability of biological membranes also known as semipermeability, partial permeability or differential permeability allows molecules to diffuse, pass by passive and active or by other types of transport processes mediated by proteins. The first chapter of the book deals with the composition of biological membranes, characterizes cellular membranes of prokaryotic, eukaryotic cells, membranes of cellular organelles and the function of biological membranes. The second chapter provides an overview of bilayer permeability, selectivity of permeabilization and cellular transport processes. Chapter 3 overviews different cell manipulations that aim to make cells permeable while maintaining not only the structural but also the functional integrity of cells. The last chapter deals with applications, particularly with reversible permeabilization to study macromolecular (DNA, RNA, poly-ADP ribose) biosynthetic processes, replication, gene expression, visualization of replicons, intermediates of chromosome condensation, genotoxic chromatin changes, upon treatment with heavy metals and different types of irradiation. The interdisciplinary aspects of the book contribute to the understanding of the structure of nucleic acids, replicative intermediates, Okazaki fragments, RNA primer mechanism, subphases of replication and repair synthesis, replicons, gene expression, chromosome condensation generated a wealth of information that will attract a wide readership. The natural audience engaged in DNA research, including genetics, cell and molecular biology, chemistry, biochemistry, medicine, pharmacy will find essential material in the book.

The Biophysics of Cell Membranes

The Biophysics of Cell Membranes PDF

Author: Richard M. Epand

Publisher: Springer

Published: 2017-09-25

Total Pages: 219

ISBN-13: 9811062447

DOWNLOAD EBOOK →

This volume focuses on the modulation of biological membranes by specific biophysical properties. The readers are introduced to emerging biophysical approaches that mimick specific states (like membrane lipid asymmetry, membrane curvature, lipid flip-flop, lipid phase separation) that are relevant to the functioning of biological membranes. The first chapter describes innovative methods to mimic the prevailing asymmetry in biological membranes by forming asymmetrical membranes made of monolayers with different compositions. One of the chapters illustrates how physical parameters, like curvature and elasticity, can affect and modulate the interactions between lipids and proteins. This volume also describes the sensitivity of certain ion channels to mechanical forces and it presents an analysis of how cell shape is determined by both the cytoskeleton and the lipid domains in the membrane. The last chapter provides evidence that liposomes can be used as a minimal cellular model to reconstitute processes related to the origin of life. Each topic covered in this volume is presented by leading experts in the field who are able to present clear, authoritative and up-to-date reviews. The novelty of the methods proposed and their potential for a deeper molecular description of membrane functioning are particularly relevant experts in the areas of biochemistry, biophysics and cell biology, while also presenting clear and thorough introductions, making the material suitable for students in these fields as well.

Characterization of Biological Membranes

Characterization of Biological Membranes PDF

Author: Mu-Ping Nieh

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2019-07-22

Total Pages: 532

ISBN-13: 3110544687

DOWNLOAD EBOOK →

The study of membranes has become of high importance in the fields of biology, pharmaceutical chemistry and medicine, since much of what happens in a cell or in a virus involves biological membranes. The current book is an excellent introduction to the area, which explains how modern analytical methods can be applied to study biological membranes and membrane proteins and the bioprocesses they are involved to.

Biomembrane Simulations

Biomembrane Simulations PDF

Author: Max L. Berkowitz

Publisher: CRC Press

Published: 2019-04-30

Total Pages: 258

ISBN-13: 1351060309

DOWNLOAD EBOOK →

Due to recent advancements in the development of numerical algorithms and computational hardware, computer simulations of biological membranes, often requiring use of substantial computational resources, are now reaching a mature stage. Since molecular processes in membranes occur on a multitude of spatial and time scales, molecular simulations of membranes can also serve as a testing ground for use of multi-scale simulation techniques. This book addresses some of the important issues related to understanding properties and behavior of model biological membranes and it Shows how simulations improve our understanding of biological membranes and makes connections with experimental results. Presents a careful discussion of the force fields used in the membrane simulations including detailed all-atom fields and coarse-grained fields. Presents a continuum description of membranes. Discusses a variety of issues such as influence of membrane surfaces on properties of water, interaction between membranes across water, nanoparticle permeation across the membrane, action of anesthetics and creation of inhomogeneous regions in membranes. Discusses important methodological issues when using simulations to examine phenomena such as pore creation and permeation across membranes. Discusses progress recently achieved in modeling bacterial membranes. It will be a valuable resource for graduate students, researchers and instructors in biochemistry, biophysics, pharmacology, physiology, and computational biology.

Molecular Biology of Membranes

Molecular Biology of Membranes PDF

Author: H.R. Petty

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 416

ISBN-13: 1489911464

DOWNLOAD EBOOK →

This text attempts to introduce the molecular biology of cell membranes to students and professionals of diverse backgrounds. Although several membrane biology books are available, they do not integrate recent knowledge gained using modern molecular tools with more traditional membrane topics. Molecular techniques, such as cDNA cloning and x-ray diffraction, have provided fresh insights into cell membrane structure and function. The great excitement today, which I attempt to convey in this book, is that molecular details are beginning to merge with physiological responses. In other words, we are beginning to understand precisely how membranes work. This textbook is appropriate for upper-level undergraduate or beginning graduate students. Readers should have previous or concurrent coursework in biochemistry; prior studies in elementary physiology would be helpful. I have found that the presentation of topics in this book is appropriate for students of biology, biochemistry, biophysics and physiology, chemistry, and medicine. This book will be useful in courses focusing on membranes and as a supplementary text in biochemistry courses. Professionals will also find this to be a useful resource book for their personal libraries.