Beneficial Microbes for Sustainable Agriculture under Stress Conditions

Beneficial Microbes for Sustainable Agriculture under Stress Conditions PDF

Author: Tongmin Sa

Publisher: Elsevier

Published: 2024-03-19

Total Pages: 542

ISBN-13: 0443131945

DOWNLOAD EBOOK →

Beneficial Microbes for Sustainable Agriculture under Abiotic Stress: Funtional Traits and Regulation highlights the potential for microbe-mediated stress phytolerance to be improved by presenting multiple scenarios of application and results. In most research and studies, abiotic stress is applied singularly to specific plants inoculated with a bioinoculum or a bacterial consortium to isolate specific plant-microbe responses. However, in reality, plants are continually exposed to a multitude of different stresses simultaneously occurring. This book presents bacteria functional traits and bacteria-mediated plant responses under both specific or combined stress conditions. Collectively, it provides insights into bacterial functional traits and bacteria-mediated plant responses in a wide range of conditions, providing foundational understanding of their potential benefits, and inspiring further research. The book centers on specific bacterial strains and groups which have been shown to effectively promote stress tolerance, and which could be utilized to boost agricultural production under stress conditions. Their potential utilization in stress affected lands not just improves crop production but could also be in line with sustainable agriculture. With the advancement of tools such as Omics related technologies, emerging information on bacterial functional traits and regulations on bacteria mediated phytotolerance will also allow us to develop relevant biotechnologies harnessing potentials of plant-bacteria interactions under stress conditions. The information in this volume will be of interest to those working toward these next steps. Includes microbial functional traits and responses common to all stresses, unique to specific stress and shared by multiple stresses Focuses on microbial strains and groups proven to be most effective in promoting stress tolerance Explores opportunities toward improvement of sustainable agriculture and resulting food security

Molecular Aspects of Plant Beneficial Microbes in Agriculture

Molecular Aspects of Plant Beneficial Microbes in Agriculture PDF

Author: Vivek Sharma

Publisher: Academic Press

Published: 2020-03-12

Total Pages: 454

ISBN-13: 0128184698

DOWNLOAD EBOOK →

Molecular Aspects of Plant Beneficial Microbes in Agriculture explores their diverse interactions, including the pathogenic and symbiotic relationship which leads to either a decrease or increase in crop productivity. Focusing on these environmentally-friendly approaches, the book explores their potential in changing climatic conditions. It presents the exploration and regulation of beneficial microbes in offering sustainable and alternative solutions to the use of chemicals in agriculture. The beneficial microbes presented here are capable of contributing to nutrient balance, growth regulators, suppressing pathogens, orchestrating immune response and improving crop performance. The book also offers insights into the advancements in DNA technology and bioinformatic approaches which have provided in-depth knowledge about the molecular arsenal involved in mineral uptake, nitrogen fixation, growth promotion and biocontrol attributes.

Beneficial Microorganisms in Agriculture

Beneficial Microorganisms in Agriculture PDF

Author: Ram Prasad

Publisher: Springer Nature

Published: 2022-07-04

Total Pages: 357

ISBN-13: 9811907331

DOWNLOAD EBOOK →

This book discusses genetic engineering of both plants and microbes for making agricultural practices more productive and sustainable. It chapters explore the understanding of the interaction between plants and microbes, and genomic information to modify the metabolism of plants or microbes to further enhance the beneficial interaction. The book covers the development of commercial inoculants including selection of appropriate plant growth-promoting rhizobacteria/ phosphate solubilize bacteria based on target host plant, soil type, indigenous microbial communities, environmental conditions, inoculant density, suitability of carriers and compatibility with integrated crop management. This is a relevant content for scientists and researchers working on soil biology, sustainable agricultural and plant physiology. Also, this book is a useful read for graduate and post graduate students of agriculture, botany and microbiology.

Beneficial Microbes Alleviate Climatic Stresses in Plants

Beneficial Microbes Alleviate Climatic Stresses in Plants PDF

Author: Ying Ma

Publisher: Frontiers Media SA

Published: 2019-07-30

Total Pages: 117

ISBN-13: 2889459241

DOWNLOAD EBOOK →

This Research Topic addresses the mechanisms by which beneficial soil microbes, such as fungi and bacteria, protect their host plant from ‘climatic stresses’ that are increasing due to climate change. We will highlight 1) recent progress in fundamental research, 2) applied studies aimed at promoting sustainable agriculture and environmental remediation, and 3) emerging biotechnologies that promote crop adaptation to climate change. Plants respond to various climatic stresses such as drought, salinity, elevated CO2, and extreme temperatures. These responses induce changes at the molecular, cellular, and physiological levels that restrict the establishment, growth, and development of the plant. Understanding these changes has become an important research goal due to concerns about the adverse effects of climatic stresses on agriculture sustainability, global food security, and even plant-based remediation technologies. Some beneficial soil microorganisms, such as arbuscular mycorrhizal fungi and plant growth promoting bacteria, are able to protect and promote the growth of their host plants by acting as bioprotectants (via induced systemic resistance), biopesticides (via antibiotic functions) and phytostimulators (via triggering hormonal signaling networks). Plant adaptation to various climatic stresses is dynamic and involves complex cross-talk within the regulatory network (e.g. transcription factors, kinase cascades, and signaling molecules). However, the detailed molecular, cellular and physiological mechanisms underlying plant–beneficial microbe interactions in climatic stress adaptation remain largely unknown.

Plant Growth Promoting Rhizobacteria for Sustainable Stress Management

Plant Growth Promoting Rhizobacteria for Sustainable Stress Management PDF

Author: R. Z. Sayyed

Publisher: Springer Nature

Published: 2019-08-28

Total Pages: 362

ISBN-13: 9811365369

DOWNLOAD EBOOK →

Increasing agro productivity to feed a growing global population under the present climate scenario requires optimizing the use of resources and adopting sustainable agricultural production. This can be achieved by using plant beneficial bacteria, i.e., those bacteria that enhance plant growth under abiotic stress conditions, and more specifically, microorganisms such as plant growth promoting rhizobacteria (PGPR), which are the most promising candidates in this regard. Attaining sustainable agricultural production while preserving environmental quality, agro-ecosystem functions and biodiversity represents a major challenge for current agricultural practices; further, the traditional use of chemical inputs (fertilizers, pesticides, nutrients etc.) poses serious threats to crop productivity, soil fertility and the nutritional value of farm produce. Given these risks, managing pests and diseases, maintaining agro-ecosystem health, and avoiding health issues for humans and animals have now become key priorities. The use of PGPR as biofertilizers, plant growth promoters, biopesticides, and soil and plant health managers has attracted considerable attention among researchers, agriculturists, farmers, policymakers and consumers alike. Using PGPR can help meet the expected demand for global agricultural productivity to feed the world’s booming population, which is predicted to reach roughly 9 billion by 2050. However, to do so, PGPR strains must be safe for the environment, offer considerable plant growth promotion and biocontrol potential, be compatible with useful soil rhizobacteria, and be able to withstand various biotic and abiotic stresses. Accordingly, the book also highlights the need for better strains of PGPR to complement increasing agro-productivity.

Microorganisms for Green Revolution

Microorganisms for Green Revolution PDF

Author: Deepak G. Panpatte

Publisher: Springer

Published: 2017-12-07

Total Pages: 443

ISBN-13: 9811062412

DOWNLOAD EBOOK →

This book addresses basic and applied aspects of two nexus points of microorganisms in agro-ecosystems, namely their functional role as bio-fertilizers and bio-pesticides. Readers will find detailed information on all of the aspects that are required to make a microbe “agriculturally beneficial.” A healthy, balanced soil ecosystem provides a habitat for crops to grow without the need for interventions such as agro-chemicals. No organism in an agro-ecosystem can flourish individually, which is why research on the interaction of microorganisms with higher forms of life has increasingly gained momentum in the last 10-15 years. In fact, most of plants’ life processes only become possible through interactions with microorganisms. Using these “little helpers” as a biological alternative to agro-chemicals is a highly contemporary field of research. The information presented here is based on the authors’ extensive experience in the subject area, gathered in the course of their careers in the field of agricultural microbiology. The book offers a valuable resource for all readers who are actively involved in research on agriculturally beneficial microorganisms. In addition, it will help prepare readers for the future challenges that climate change will pose for agriculture and will help to bridge the current gaps between different scientific communities.

Principles of Plant-Microbe Interactions

Principles of Plant-Microbe Interactions PDF

Author: Ben Lugtenberg

Publisher: Springer

Published: 2014-12-04

Total Pages: 447

ISBN-13: 3319085751

DOWNLOAD EBOOK →

The use of microbial plant protection products is growing and their importance will strongly increase due to political and public pressure. World population is growing and the amount of food needed by 2050 will be double of what is produced now whereas the area of agricultural land is decreasing. We must increase crop yield in a sustainable way. Chemical plant growth promoters must be replaced by microbiological products. Also here, the use of microbial products is growing and their importance will strongly increase. A growing area of agricultural land is salinated. Global warming will increase this process. Plants growth is inhibited by salt or even made impossible and farmers tend to disuse the most salinated lands. Microbes have been very successfully used to alleviate salt stress of plants. Chemical pollution of land can make plant growth difficult and crops grown are often polluted and not suitable for consumption. Microbes have been used to degrade these chemical pollutants.

Agriculturally Important Microbes for Sustainable Agriculture

Agriculturally Important Microbes for Sustainable Agriculture PDF

Author: Vijay Singh Meena

Publisher: Springer

Published: 2017-09-20

Total Pages: 374

ISBN-13: 981105343X

DOWNLOAD EBOOK →

This book is a compilation of case studies from different countries and covers contemporary with future prospective for sustainable development of agriculture. The book highlights the real-world as well as future generation situations facing the challenges for the twenty first century will be production of sufficient food and highlights the strengths, weaknesses and opportunities, to meet the needs of fast growing population it is imperative to increase agricultural productivity in an environmentally sustainable manner. Due to imbalanced use of chemical fertilizers and agrochemicals has a considerable negative impact on economy and environmental sustainability of nation, for the sustainable alternative means to solve these problems, the efficient utilization of biological agents have been extensively studied. Naturally existing plant-microbe-environment interactions are utilized in many ways for enhancing plant productivity. A greater understanding of how plants and microbes live together and benefit each other can therefore provide new strategies to improve plant productivity, in most sustainable way. To achieve the objective of sustainable agricultural practices there is a need for understanding both basic and applied aspects of agriculturally important microorganisms. Focus needs to be on transforming agricultural systems from nutrient deficient to nutrient rich soil-plant system. This book is split into two parts, with an aim to provide comprehensive description and highlight a holistic approach. It elucidated various mechanisms of nutrients solubilisation and its importance in enhancement of plant growth, nutrient content, yield of various crops and vegetables as well as soil fertility and health. Unit-1 in this book explains the importance of soil microbes in sustainable crop production. It contains chapters detailing the role and mechanism of action of soil microbes which enhances the productivity via various bio-chemical and molecular channe ls. In unit-2 the role of microbes in plant protection is elaborated. With the help of case studies of food crops, multiple ways in which soil microbes help in fighting and preventing plant diseases is explained. With the given content and layout book will be an all-inclusive collection of information, which will be useful for students, academicians, researchers working in the field of rhizospheric mechanisms, agricultural microbiology, soil microbiology, biotechnology, agronomy and sustainable agriculture and also for policy makers in the area of food security and sustainable agriculture.

Plant Growth Promoting Rhizobacteria for Agricultural Sustainability

Plant Growth Promoting Rhizobacteria for Agricultural Sustainability PDF

Author: Ashok Kumar

Publisher: Springer

Published: 2019-06-28

Total Pages: 314

ISBN-13: 9811375534

DOWNLOAD EBOOK →

To meet the food security needs of the 21st century, this book focuses on ecofriendly and sustainable production technologies based on plant growth promoting rhizobacteria (PGPR). It is estimated that the global population could increase to 9 billion by 2050. Further, the amount of land devoted to farming has decreased. Soil is a living entity, and is not only a valuable natural resource for agricultural and food security, but also for the preservation of all life processes. Agricultural productivity rests on the foundation of microbial diversity in the soil, and in recent years, PGPR have emerged as an important and promising tool for sustainable agriculture. The injudicious use of agrochemicals by farmers has created a range of negative impacts, not only threatening the environment, but also destroying useful microorganisms in the soil. The efficient use of PGPR reduces the need for these chemicals while simultaneously lowering production costs. In turn, increased yields could provide a more favourable environment and encourage sustainability. This book assesses the impacts of PGPR on crops, environmental and socio-economic sustainability, and demonstrates these ecofriendly technologies’ three critical advantages, namely (a) enhanced crop productivity, (b) reduced application of agrochemicals, and (c) increased incomes for farmers. Besides offering an economically attractive and ecologically sound means of augmenting the nutrient supply and combatting soil-borne pathogens, PGPR play an important part in boosting soil fertility, bioremediation and stress management for the development of ecofriendly and sustainable agriculture.

Beneficial Microbes for Sustainable Agriculture and Environmental Management

Beneficial Microbes for Sustainable Agriculture and Environmental Management PDF

Author: Jeyabalan Sangeetha

Publisher: CRC Press

Published: 2020-03-27

Total Pages: 249

ISBN-13: 1000008231

DOWNLOAD EBOOK →

Microbes are the most abundant organisms in the biosphere and regulate many critical elemental and biogeochemical phenomena. Because microbes are the key players in the carbon cycle and in related biological reactions, microbial ecology is a vital research area for understanding the contribution of the biosphere in global warming and the response of the natural environment to climate variations. The beneficial uses of microbes have enabled constructive and cost-effective responses that have not been possible through physical or chemical methods. This new volume reviews the multifaceted interactions among microbes, ecosystems, and their pivotal role in maintaining a more balanced environment, in order to help facilitate living organisms coexisting with the natural environment. With extensive references, tables, and illustrations, this book provides valuable information on microbial utilization for environmental sustainability and provides fascinating insights into microbial diversity. Key features include: Looks at enhancing plant production through growth-promoting arbuscular mycorrhizae, endophytic bacteria, and microbiome networks Considers microbial degradation and environmental management of e-wastes and azo dyes Explores soil-plant microbe interactions in metal-contaminated soils Examines radiation-resistant thermophiles for engineered bioremediation Describes potential indigenous/effective microbes for wastewater treatment processes Presents research on earthworms and microbes for organic farming