Bayesian Inference in Wavelet-Based Models

Bayesian Inference in Wavelet-Based Models PDF

Author: Peter Müller

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 406

ISBN-13: 1461205670

DOWNLOAD EBOOK →

This volume presents an overview of Bayesian methods for inference in the wavelet domain. The papers in this volume are divided into six parts: The first two papers introduce basic concepts. Chapters in Part II explore different approaches to prior modeling, using independent priors. Papers in the Part III discuss decision theoretic aspects of such prior models. In Part IV, some aspects of prior modeling using priors that account for dependence are explored. Part V considers the use of 2-dimensional wavelet decomposition in spatial modeling. Chapters in Part VI discuss the use of empirical Bayes estimation in wavelet based models. Part VII concludes the volume with a discussion of case studies using wavelet based Bayesian approaches. The cooperation of all contributors in the timely preparation of their manuscripts is greatly recognized. We decided early on that it was impor tant to referee and critically evaluate the papers which were submitted for inclusion in this volume. For this substantial task, we relied on the service of numerous referees to whom we are most indebted. We are also grateful to John Kimmel and the Springer-Verlag referees for considering our proposal in a very timely manner. Our special thanks go to our spouses, Gautami and Draga, for their support.

Multiscale Signal Analysis and Modeling

Multiscale Signal Analysis and Modeling PDF

Author: Xiaoping Shen

Publisher: Springer Science & Business Media

Published: 2012-09-18

Total Pages: 388

ISBN-13: 1461441447

DOWNLOAD EBOOK →

Multiscale Signal Analysis and Modeling presents recent advances in multiscale analysis and modeling using wavelets and other systems. This book also presents applications in digital signal processing using sampling theory and techniques from various function spaces, filter design, feature extraction and classification, signal and image representation/transmission, coding, nonparametric statistical signal processing, and statistical learning theory.

Bayesian Thinking, Modeling and Computation

Bayesian Thinking, Modeling and Computation PDF

Author:

Publisher: Elsevier

Published: 2005-11-29

Total Pages: 1062

ISBN-13: 0080461174

DOWNLOAD EBOOK →

This volume describes how to develop Bayesian thinking, modelling and computation both from philosophical, methodological and application point of view. It further describes parametric and nonparametric Bayesian methods for modelling and how to use modern computational methods to summarize inferences using simulation. The book covers wide range of topics including objective and subjective Bayesian inferences with a variety of applications in modelling categorical, survival, spatial, spatiotemporal, Epidemiological, software reliability, small area and micro array data. The book concludes with a chapter on how to teach Bayesian thoughts to nonstatisticians. Critical thinking on causal effects Objective Bayesian philosophy Nonparametric Bayesian methodology Simulation based computing techniques Bioinformatics and Biostatistics

Statistical Modeling by Wavelets

Statistical Modeling by Wavelets PDF

Author: Brani Vidakovic

Publisher: John Wiley & Sons

Published: 2009-09-25

Total Pages: 410

ISBN-13: 0470317868

DOWNLOAD EBOOK →

A comprehensive, step-by-step introduction to wavelets in statistics. What are wavelets? What makes them increasingly indispensable in statistical nonparametrics? Why are they suitable for "time-scale" applications? How are they used to solve such problems as denoising, regression, or density estimation? Where can one find up-to-date information on these newly "discovered" mathematical objects? These are some of the questions Brani Vidakovic answers in Statistical Modeling by Wavelets. Providing a much-needed introduction to the latest tools afforded statisticians by wavelet theory, Vidakovic compiles, organizes, and explains in depth research data previously available only in disparate journal articles. He carefully balances both statistical and mathematical techniques, supplementing the material with a wealth of examples, more than 100 illustrations, and extensive references-with data sets and S-Plus wavelet overviews made available for downloading over the Internet. Both introductory and data-oriented modeling topics are featured, including: * Continuous and discrete wavelet transformations. * Statistical optimality properties of wavelet shrinkage. * Theoretical aspects of wavelet density estimation. * Bayesian modeling in the wavelet domain. * Properties of wavelet-based random functions and densities. * Several novel and important wavelet applications in statistics. * Wavelet methods in time series. Accessible to anyone with a background in advanced calculus and algebra, Statistical Modeling by Wavelets promises to become the standard reference for statisticians and engineers seeking a comprehensive introduction to an emerging field.

Contributions to Bayesian Wavelet Shrinkage

Contributions to Bayesian Wavelet Shrinkage PDF

Author: Norbert Remenyi

Publisher:

Published: 2012

Total Pages:

ISBN-13:

DOWNLOAD EBOOK →

This thesis provides contributions to research in Bayesian modeling and shrinkage in the wavelet domain. Wavelets are a powerful tool to describe phenomena rapidly changing in time, and wavelet-based modeling has become a standard technique in many areas of statistics, and more broadly, in sciences and engineering. Bayesian modeling and estimation in the wavelet domain have found useful applications in nonparametric regression, image denoising, and many other areas. In this thesis, we build on the existing : techniques and propose new methods for applications in nonparametric regression, image denoising, and partially linear models. The thesis consists of an overview chapter and four main topics. In Chapter 1, we provide an overview of recent developments and the current status of Bayesian wavelet shrinkage research. The chapter contains an extensive literature review consisting of almost 100 references. The main focus of the overview chapter is on nonparametric regression, where the observations come from an unknown function contaminated with Gaussian noise. We present many methods which employ model-based and adaptive shrinkage of the wavelet coefficients through Bayes rules. These includes new developments such as dependence models, complex wavelets, and Markov chain Monte Carlo (MCMC) strategies. Some applications of Bayesian wavelet shrinkage, such as curve classification, are discussed. In Chapter 2, we propose the Gibbs Sampling Wavelet Smoother (GSWS), an adaptive wavelet denoising methodology. We use the traditional mixture prior on the wavelet coefficients, but also formulate a fully Bayesian hierarchical model in the wavelet domain accounting for the uncertainty of the prior parameters by placing hyperpriors on them. Since a closed-form solution to the Bayes estimator does not exist, the procedure is computational, in which the posterior mean is computed via MCMC simulations. We show how to efficiently develop a Gibbs sampling algorithm for the proposed model. The developed procedure is fully Bayesian, is adaptive to the underlying signal, and provides good denoising performance compared to state-of-the-art methods. Application of the method is illustrated on a real data set arising from the analysis of metabolic pathways, where an iterative shrinkage procedure is developed to preserve the mass balance of the metabolites in the system. We also show how the methodology can be extended to complex wavelet bases. In Chapter 3, we propose a wavelet-based denoising methodology based on a Bayesian hierarchical model using a double Weibull prior. The interesting feature is that in contrast to the mixture priors traditionally used by some state-of-the-art methods, the wavelet coefficients are modeled by a single density. Two estimators are developed, one based on the posterior mean and the other based on the larger posterior mode; and we show how to calculate these estimators efficiently. The methodology provides good denoising performance, comparable even to state-of-the-art methods that use a mixture prior and an empirical Bayes setting of hyperparameters; this is demonstrated by simulations on standard test functions. An application to a real-word data set is also considered. In Chapter 4, we propose a wavelet shrinkage method based on a neighborhood of wavelet coefficients, which includes two neighboring coefficients and a parental coefficient. The methodology is called Lambda-neighborhood wavelet : shrinkage, motivated by the shape of the considered neighborhood. We propose a Bayesian hierarchical model using a contaminated exponential prior on the total mean energy in the Lambda-neighborhood. The hyperparameters in the model are estimated by the empirical Bayes method, and the posterior mean, median, and Bayes factor are obtained and used in the estimation of the total mean energy. Shrinkage of the neighboring coefficients is based on the ratio of the estimated and observed energy. The proposed methodology is comparable and often superior to several established wavelet denoising methods that utilize neighboring information, which is demonstrated by extensive simulations. An application to a real-world data set from inductance plethysmography is considered, and an extension to image denoising is discussed. In Chapter 5, we propose a wavelet-based methodology for estimation and variable selection in partially linear models. The inference is conducted in the wavelet domain, which provides a sparse and localized decomposition appropriate for nonparametric components with various degrees of smoothness. A hierarchical Bayes model is formulated on the parameters of this representation, where the estimation and variable selection is performed by a Gibbs sampling procedure. For both the parametric and nonparametric part of the model we are using point-mass-at-zero contamination priors with a double exponential spread distribution. In this sense we extend the model of Chapter 2 to partially linear models. Only a few papers in the area of partially linear wavelet models exist, and we show that the proposed methodology is often superior to the existing methods with respect to the task of estimating model parameters. Moreover, the method is able to perform Bayesian variable selection by a stochastic search for the parametric part of the model.

The Oxford Handbook of Applied Bayesian Analysis

The Oxford Handbook of Applied Bayesian Analysis PDF

Author: Anthony O' Hagan

Publisher: OUP Oxford

Published: 2010-03-18

Total Pages: 924

ISBN-13: 0191613894

DOWNLOAD EBOOK →

Bayesian analysis has developed rapidly in applications in the last two decades and research in Bayesian methods remains dynamic and fast-growing. Dramatic advances in modelling concepts and computational technologies now enable routine application of Bayesian analysis using increasingly realistic stochastic models, and this drives the adoption of Bayesian approaches in many areas of science, technology, commerce, and industry. This Handbook explores contemporary Bayesian analysis across a variety of application areas. Chapters written by leading exponents of applied Bayesian analysis showcase the scientific ease and natural application of Bayesian modelling, and present solutions to real, engaging, societally important and demanding problems. The chapters are grouped into five general areas: Biomedical & Health Sciences; Industry, Economics & Finance; Environment & Ecology; Policy, Political & Social Sciences; and Natural & Engineering Sciences, and Appendix material in each touches on key concepts, models, and techniques of the chapter that are also of broader pedagogic and applied interest.

Wavelets in Functional Data Analysis

Wavelets in Functional Data Analysis PDF

Author: Pedro A. Morettin

Publisher: Springer

Published: 2017-11-07

Total Pages: 106

ISBN-13: 3319596233

DOWNLOAD EBOOK →

Wavelet-based procedures are key in many areas of statistics, applied mathematics, engineering, and science. This book presents wavelets in functional data analysis, offering a glimpse of problems in which they can be applied, including tumor analysis, functional magnetic resonance and meteorological data. Starting with the Haar wavelet, the authors explore myriad families of wavelets and how they can be used. High-dimensional data visualization (using Andrews' plots), wavelet shrinkage (a simple, yet powerful, procedure for nonparametric models) and a selection of estimation and testing techniques (including a discussion on Stein’s Paradox) make this a highly valuable resource for graduate students and experienced researchers alike.

Wavelet Methods in Statistics with R

Wavelet Methods in Statistics with R PDF

Author: Guy Nason

Publisher: Springer Science & Business Media

Published: 2010-07-25

Total Pages: 259

ISBN-13: 0387759611

DOWNLOAD EBOOK →

This book contains information on how to tackle many important problems using a multiscale statistical approach. It focuses on how to use multiscale methods and discusses methodological and applied considerations.

An Introduction to Bayesian Analysis

An Introduction to Bayesian Analysis PDF

Author: Jayanta K. Ghosh

Publisher: Springer Science & Business Media

Published: 2007-07-03

Total Pages: 356

ISBN-13: 0387354336

DOWNLOAD EBOOK →

This is a graduate-level textbook on Bayesian analysis blending modern Bayesian theory, methods, and applications. Starting from basic statistics, undergraduate calculus and linear algebra, ideas of both subjective and objective Bayesian analysis are developed to a level where real-life data can be analyzed using the current techniques of statistical computing. Advances in both low-dimensional and high-dimensional problems are covered, as well as important topics such as empirical Bayes and hierarchical Bayes methods and Markov chain Monte Carlo (MCMC) techniques. Many topics are at the cutting edge of statistical research. Solutions to common inference problems appear throughout the text along with discussion of what prior to choose. There is a discussion of elicitation of a subjective prior as well as the motivation, applicability, and limitations of objective priors. By way of important applications the book presents microarrays, nonparametric regression via wavelets as well as DMA mixtures of normals, and spatial analysis with illustrations using simulated and real data. Theoretical topics at the cutting edge include high-dimensional model selection and Intrinsic Bayes Factors, which the authors have successfully applied to geological mapping. The style is informal but clear. Asymptotics is used to supplement simulation or understand some aspects of the posterior.