Atomistic Modeling of Materials Failure

Atomistic Modeling of Materials Failure PDF

Author: Markus J. Buehler

Publisher: Springer Science & Business Media

Published: 2008-08-07

Total Pages: 547

ISBN-13: 0387764267

DOWNLOAD EBOOK →

This is an introduction to molecular and atomistic modeling techniques applied to fracture and deformation of solids, focusing on a variety of brittle, ductile, geometrically confined and biological materials. The overview includes computational methods and techniques operating at the atomic scale, and describes how these techniques can be used to model cracks and other deformation mechanisms. The book aims to make new molecular modeling techniques available to a wider community.

Atomistic Computer Simulations

Atomistic Computer Simulations PDF

Author: Veronika Brázdová

Publisher: John Wiley & Sons

Published: 2013-04-16

Total Pages: 291

ISBN-13: 3527671838

DOWNLOAD EBOOK →

Many books explain the theory of atomistic computer simulations; this book teaches you how to run them This introductory "how to" title enables readers to understand, plan, run, and analyze their own independent atomistic simulations, and decide which method to use and which questions to ask in their research project. It is written in a clear and precise language, focusing on a thorough understanding of the concepts behind the equations and how these are used in the simulations. As a result, readers will learn how to design the computational model and which parameters of the simulations are essential, as well as being able to assess whether the results are correct, find and correct errors, and extract the relevant information from the results. Finally, they will know which information needs to be included in their publications. This book includes checklists for planning projects, analyzing output files, and for troubleshooting, as well as pseudo keywords and case studies. The authors provide an accompanying blog for the book with worked examples, and additional material and references: http://www.atomisticsimulations.org/.

The Fiber Bundle Model

The Fiber Bundle Model PDF

Author: Alex Hansen

Publisher: John Wiley & Sons

Published: 2015-11-02

Total Pages: 254

ISBN-13: 352741214X

DOWNLOAD EBOOK →

Gathering research from physics, mechanical engineering, and statistics in a single resource for the first time, this text presents the background to the model, its theoretical basis, and applications ranging from materials science to earth science. The authors start by explaining why disorder is important for fracture and then go on to introduce the fiber bundle model, backed by various different applications. Appendices present the necessary mathematical, computational and statistical background required. The structure of the book allows the reader to skip some material that is too specialized, making this topic accessible to the engineering, mechanics and materials science communities, in addition to providing further reading for graduate students in statistical physics.

Forcefields for Atomistic-Scale Simulations: Materials and Applications

Forcefields for Atomistic-Scale Simulations: Materials and Applications PDF

Author: Akarsh Verma

Publisher: Springer Nature

Published: 2022-08-19

Total Pages: 395

ISBN-13: 9811930929

DOWNLOAD EBOOK →

This book describes the forcefields/interatomic potentials that are used in the atomistic-scale and molecular dynamics simulations. It covers mechanisms, salient features, formulations, important aspects and case studies of various forcefields utilized for characterizing various materials (such as nuclear materials and nanomaterials) and applications. This book gives many help to students and researchers who are studying the forcefield potentials and introduces various applications of atomistic-scale simulations to professors who are researching molecular dynamics.

Multiscale Materials Modeling for Nanomechanics

Multiscale Materials Modeling for Nanomechanics PDF

Author: Christopher R. Weinberger

Publisher: Springer

Published: 2016-08-30

Total Pages: 547

ISBN-13: 3319334808

DOWNLOAD EBOOK →

This book presents a unique combination of chapters that together provide a practical introduction to multiscale modeling applied to nanoscale materials mechanics. The goal of this book is to present a balanced treatment of both the theory of the methodology, as well as some practical aspects of conducting the simulations and models. The first half of the book covers some fundamental modeling and simulation techniques ranging from ab-inito methods to the continuum scale. Included in this set of methods are several different concurrent multiscale methods for bridging time and length scales applicable to mechanics at the nanoscale regime. The second half of the book presents a range of case studies from a varied selection of research groups focusing either on a the application of multiscale modeling to a specific nanomaterial, or novel analysis techniques aimed at exploring nanomechanics. Readers are also directed to helpful sites and other resources throughout the book where the simulation codes and methodologies discussed herein can be accessed. Emphasis on the practicality of the detailed techniques is especially felt in the latter half of the book, which is dedicated to specific examples to study nanomechanics and multiscale materials behavior. An instructive avenue for learning how to effectively apply these simulation tools to solve nanomechanics problems is to study previous endeavors. Therefore, each chapter is written by a unique team of experts who have used multiscale materials modeling to solve a practical nanomechanics problem. These chapters provide an extensive picture of the multiscale materials landscape from problem statement through the final results and outlook, providing readers with a roadmap for incorporating these techniques into their own research.

Heterogeneous Materials

Heterogeneous Materials PDF

Author: Muhammad Sahimi

Publisher: Springer Science & Business Media

Published: 2003-05-15

Total Pages: 650

ISBN-13: 0387001662

DOWNLOAD EBOOK →

This monograph describes and discusses the properties of heterogeneous materials, comparing two fundamental approaches to describing and predicting materials’ properties. This multidisciplinary book will appeal to applied physicists, materials scientists, chemical and mechanical engineers, chemists, and applied mathematicians.

Damage and Failure of Composite Materials

Damage and Failure of Composite Materials PDF

Author: Ramesh Talreja

Publisher: Cambridge University Press

Published: 2012-06-07

Total Pages: 315

ISBN-13: 0521819423

DOWNLOAD EBOOK →

Bringing together materials mechanics and modelling, this book provides a complete guide to damage mechanics of composite materials for engineers.

Multiscale Modeling for Process Safety Applications

Multiscale Modeling for Process Safety Applications PDF

Author: Arnab Chakrabarty

Publisher: Butterworth-Heinemann

Published: 2015-11-29

Total Pages: 446

ISBN-13: 0123972833

DOWNLOAD EBOOK →

Multiscale Modeling for Process Safety Applications is a new reference demonstrating the implementation of multiscale modeling techniques on process safety applications. It is a valuable resource for readers interested in theoretical simulations and/or computer simulations of hazardous scenarios. As multi-scale modeling is a computational technique for solving problems involving multiple scales, such as how a flammable vapor cloud might behave if ignited, this book provides information on the fundamental topics of toxic, fire, and air explosion modeling, as well as modeling jet and pool fires using computational fluid dynamics. The book goes on to cover nanomaterial toxicity, QPSR analysis on relation of chemical structure to flash point, molecular structure and burning velocity, first principle studies of reactive chemicals, water and air reactive chemicals, and dust explosions. Chemical and process safety professionals, as well as faculty and graduate researchers, will benefit from the detailed coverage provided in this book. Provides the only comprehensive source addressing the use of multiscale modeling in the context of process safety Bridges multiscale modeling with process safety, enabling the reader to understand mapping between problem detail and effective usage of resources Presents an overall picture of addressing safety problems in all levels of modeling and the latest approaches to each in the field Features worked out examples, case studies, and a question bank to aid understanding and involvement for the reader

Molecular Modeling and Multiscaling Issues for Electronic Material Applications

Molecular Modeling and Multiscaling Issues for Electronic Material Applications PDF

Author: Artur Wymyslowski

Publisher: Springer

Published: 2014-11-20

Total Pages: 203

ISBN-13: 3319128620

DOWNLOAD EBOOK →

This book offers readers a snapshot of the progression of molecular modeling in the electronics industry and how molecular modeling is currently being used to understand materials to solve relevant issues in this field. The reader is introduced to the evolving role of molecular modeling, especially seen from the perspective of the IEEE community and modeling in electronics. This book also covers the aspects of molecular modeling needed to understand the relationship between structures and mechanical performance of materials. The authors also discuss the transitional topic of multiscale modeling and recent developments on the atomistic scale and current attempts to reach the submicron scale, as well as the role that quantum mechanics can play in performance prediction.