Atomic Physics in Hot Plasmas

Atomic Physics in Hot Plasmas PDF

Author: David Salzmann

Publisher: Oxford University Press, USA

Published: 1998

Total Pages: 272

ISBN-13: 0195109309

DOWNLOAD EBOOK →

Presents a comprehensive treatise on the field of atomic physics in hot plasmas, which can be used both for tutorial and professional purposes, and which summarizes the central subjects in the field.

Atomic Physics in Hot Plasmas

Atomic Physics in Hot Plasmas PDF

Author: David Salzmann

Publisher: Oxford University Press

Published: 1998-08-20

Total Pages: 272

ISBN-13: 0195355156

DOWNLOAD EBOOK →

The aim of this book is to provide the reader with a coherent and updated comprehensive treatise that covers the central subjects of the field. The style and content is suitable both for students and researchers. Highlights of the book include (among many others) the Ion-Sphere model, statistical models, Average-Atom model, emission spectrum, unresolved transition arrays, supertransition arrays, radiation transport, escape factors and x-ray lasers.

Atomic Physics for Hot Plasmas,

Atomic Physics for Hot Plasmas, PDF

Author: Vi︠a︡cheslav Petrovich Shevelʹko

Publisher: CRC Press

Published: 1993

Total Pages: 208

ISBN-13:

DOWNLOAD EBOOK →

This is a text/software package offering undergraduates hands-on learning of a computer programming language through problem solving and examples worked on computer.

Plasmas

Plasmas PDF

Author: C. F. Barnett

Publisher: Academic Press

Published: 2013-09-11

Total Pages: 517

ISBN-13: 1483218678

DOWNLOAD EBOOK →

Applied Atomic Collision Physics, Volume 2: Plasmas covers topics on magnetically confined plasmas. The book starts by providing the history of fusion research and describing the various approaches in both magnetically and inertially confined plasmas. The text then gives a general discussion of the basic concepts and properties in confinement and heating of a plasma. The theory of atomic collisions that result in excited quantum states, particularly highly ionized impurity atoms; and diverse diagnostic topics such as emission spectra, laser scattering, electron cyclotron emission, particle beams, and bremsstrahlung are also considered. The book further tackles heating of plasma by energetic particles; the boundary or edge plasma and particle-surface interactions; and the role of atomic physics in hot dense plasmas. Physicists and people involved in plasma and fusion energy studies will find the book invaluable.

Atomic Properties in Hot Plasmas

Atomic Properties in Hot Plasmas PDF

Author: Jacques Bauche

Publisher: Springer

Published: 2015-08-03

Total Pages: 386

ISBN-13: 3319181475

DOWNLOAD EBOOK →

This book is devoted to the calculation of hot-plasma properties which generally requires a huge number of atomic data. It is the first book that combines information on the details of the basic atomic physics and its application to atomic spectroscopy with the use of the relevant statistical approaches. Information like energy levels, radiative rates, collisional and radiative cross-sections, etc., must be included in equilibrium or non-equilibrium models in order to describe both the atomic-population kinetics and the radiative properties. From the very large number of levels and transitions involved in complex ions, some statistical (global) properties emerge. The book presents a coherent set of concepts and compact formulas suitable for tractable and accurate calculations. The topics addressed are: radiative emission and absorption, and a dozen of other collisional and radiative processes; transition arrays between level ensembles (configurations, superconfigurations); effective temperatures of configurations, superconfigurations, and ions; charge-state distributions; radiative power losses and opacity. There are many numerical examples and comparisons with experiment presented throughout the book. The plasma properties described in this book are especially relevant to large nuclear fusion facilities such as the NIF (California) and the ITER (France), and to astrophysics. Methods relevant to the central-field configurational model are described in detail in the appendices: tensor-operator techniques, second-quantization formalism, statistical distribution moments, and the algebra of partition functions. Some extra tools are propensity laws, correlations, and fractals. These methods are applied to the analytical derivation of many properties, specially the global ones, through which the complexity is much reduced. The book is intended for graduate-level students, and for physicists working in the field.

Plasma Atomic Physics

Plasma Atomic Physics PDF

Author: Frank B. Rosmej

Publisher: Springer Nature

Published: 2021-09-06

Total Pages: 668

ISBN-13: 3030059685

DOWNLOAD EBOOK →

Plasma Atomic Physics provides an overview of the elementary processes within atoms and ions in plasmas, and introduces readers to the language of atomic spectra and light emission, allowing them to explore the various and fascinating radiative properties of matter. The book familiarizes readers with the complex quantum-mechanical descriptions of electromagnetic and collisional processes, while also developing a number of effective qualitative models that will allow them to obtain adequately comprehensive descriptions of collisional-radiative processes in dense plasmas, dielectronic satellite emissions and autoionizing states, hollow ion X-ray emissions, polarized atoms and ions, hot electrons, charge exchange, atomic population kinetics, and radiation transport. Numerous applications to plasma spectroscopy and experimental data are presented, which concern magnetic confinement fusion, inertial fusion, laser-produced plasmas, and X-ray free-electron lasers’ interaction with matter. Particular highlights include the development of quantum kinetics to a level surpassing the almost exclusively used quasi-classical approach in atomic population kinetics, the introduction of the recently developed Quantum-F-Matrix-Theory (QFMT) to study the impact of plasma microfields on atomic populations, and the Enrico Fermi equivalent photon method to develop the “Plasma Atom”, where the response properties and oscillator strength distribution are represented with the help of a local plasma frequency of the atomic electron density. Based on courses held by the authors, this material will assist students and scientists studying the complex processes within atoms and ions in different kinds of plasmas by developing relatively simple but highly effective models. Considerable attention is paid to a number of qualitative models that deliver physical transparency, while extensive tables and formulas promote the practical and useful application of complex theories and provide effective tools for non-specialist readers.

Plasma Physics

Plasma Physics PDF

Author: Alexander Piel

Publisher: Springer Science & Business Media

Published: 2010-06-14

Total Pages: 405

ISBN-13: 3642104916

DOWNLOAD EBOOK →

This book is an outgrowth of courses in plasma physics which I have taught at Kiel University for many years. During this time I have tried to convince my students that plasmas as different as gas dicharges, fusion plasmas and space plasmas can be described in a uni ed way by simple models. The challenge in teaching plasma physics is its apparent complexity. The wealth of plasma phenomena found in so diverse elds makes it quite different from atomic physics, where atomic structure, spectral lines and chemical binding can all be derived from a single equation—the Schrödinger equation. I positively accept the variety of plasmas and refrain from subdividing plasma physics into the traditional, but arti cially separated elds, of hot, cold and space plasmas. This is why I like to confront my students, and the readers of this book, with examples from so many elds. By this approach, I believe, they will be able to become discoverers who can see the commonality between a falling apple and planetary motion. As an experimentalist, I am convinced that plasma physics can be best understood from a bottom-up approach with many illustrating examples that give the students con dence in their understanding of plasma processes. The theoretical framework of plasma physics can then be introduced in several steps of re nement. In the end, the student (or reader) will see that there is something like the Schrödinger equation, namely the Vlasov-Maxwell model of plasmas, from which nearly all phenomena in collisionless plasmas can be derived.

Physics of High Temperature Plasmas

Physics of High Temperature Plasmas PDF

Author: George Schmidt

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 423

ISBN-13: 0323161766

DOWNLOAD EBOOK →

Physics of High Temperature Plasmas, Second Edition focuses on plasma physics and the advances in this field. This book explores the experimental observations on linear waves and instabilities. Comprised of 11 chapters, this edition begins with an overview of heat transition as a result of the heating of a solid or liquid substance. This book then examines the behavior of plasmas, which has great significance for the understanding of our universe. This text also investigates the possible application of plasmas, such as the application of hot plasma as thermonuclear fuel. Other chapters discuss the laws of plasma physics, with emphasis on those phenomena that are relevant to the operation of thermonuclear machines. This text discusses as well the electromagnetic forces on an earthly scale, the quantum effects, particle collisions, and Maxwell’s equation. The final chapter of the book deals with the motion of charged particles. This book is intended for researchers engaged in plasma research and graduate students taking a course in plasma physics.

Atomic Processes in Plasmas

Atomic Processes in Plasmas PDF

Author: James S. Cohen

Publisher: American Inst. of Physics

Published: 2004-11-09

Total Pages: 298

ISBN-13: 9780735402119

DOWNLOAD EBOOK →

All papers were peer-reviewed for this proceedings volume. The conference focused on atomic physics relevant to plasmas, and plasma science dependent on atomic processes, from either a modeling or diagnostics point of view. Also, an exciting breakthrough discovery was first announced at this conference on a new antihydrogen formation technique. Topics include the relatively mature research areas of atomic structure and collisions, atomic kinetics, laser-produced plasmas, magnetic- and inertial-confinement fusion, Z-pinches, opacities and equation of state, lighting, and astrophysics, as well as the burgeoning areas of warm dense matter simulations and ultracold plasmas used, for example, in the recent formation of antihydrogen.