Aspects of Crack Growth in Single-Crystal Nickel-Base Superalloys

Aspects of Crack Growth in Single-Crystal Nickel-Base Superalloys PDF

Author: Christian Busse

Publisher: Linköping University Electronic Press

Published: 2017-11-20

Total Pages: 26

ISBN-13: 9176853950

DOWNLOAD EBOOK →

This Licentiate of Engineering thesis is a product of the results generated in the research project KME-702, which comprises modelling, microstructure investigations and material testing of cast nickel-base superalloys. The main objective of this work is to model the fatigue crack propagation behaviour in single-crystal nickel-base superalloys. To achieve this, the influence of the crystal orientations on the cracking behaviour is assessed. The results show that the crystal orientation is strongly affecting the material response and must be accounted for. Furthermore, a linear elastic crack driving force parameter suitable for describing crystallographic cracking has been developed. This parameter is based on resolved anisotropic stress intensity factors and is able to predict the correct crystallographic cracking plane after a transition from a Mode I crack. Finally, a method to account for inelastic deformations in a linear elastic fracture mechanics context was investigated. A residual stress field is extracted from an uncracked finite-element model with a perfectly plastic material model and superimposed on the stress field from the cracked model with a linear elastic material model to account for the inelastic deformations during the determination of the crack driving force. The modelling work is validated by material testing on two different specimen geometries at different temperatures. This Licentiate of Engineering thesis consists of two parts, where Part I gives an introduction and background to the research area, while Part II consists of three papers. Denna licentiatavhandling är en produkt av resultat som genererats i forskningsprojektet KME-702, och omfattar modellering, mikrostrukturundersökningar och materialprovning av gjutna nickelbaserade superlegeringar. Huvudsyftet med detta arbete är att modellera sprickförloppet under utmattning i enkristallina nickelbaserade superlegeringar. För att uppnå detta har kristallorienteringens inverkan på sprickbeteendet utvärderats. Resultaten visar att kristallorienteringen har en stark inverkan på materialbeteendet, således måste hänsyn till denna tas. Dessutom har en linjär-elastisk sprickdrivkraftsparameter lämplig att beskriva kristallografisk sprickbildning utvecklats. Denna parameter är baserad på anisotropa spänningsintensitetsfaktorer på kristallplan och kan prediktera det korrekta kristallografiska sprickplanet efter övergång från Modus I spricka. Slutligen har undersökts en metod för att ta hand om inelastiska deformationer i en linjär-elastisk brottmekanikskontext. Ett restspänningsfält extraherades från en osprucken finita element modell med en ideal plastisk materialmodell. Denna överlagrades på spänningsfältet från den spruckna modellen, som analyserades med en linjär-elastisk materialmodell, för att ta hänsyn till de inelastiska deformationerna vid bestämning av sprickdrivkraften. Modelleringsarbetet validerades genom materialprovning på två olika provgeometrier vid olika temperaturer. Licentiatavhandlingen består av två delar, där del I ger en introduktion och bakgrund till forskningsområdet medan del II består av tre papper. Dieses Lizentiat der Ingenieurwissenschaften ist im Rahmen des Forschungsprojekts KME-702 entstanden, welches Modellierung, Mikrostrukturuntersuchungen und Materialtests von gegossenen nickelbasierten Superlegierungen umfasst. Das Hauptziel dieser Arbeit ist die Modellierung der Ermüdungsrissausbreitung in einkristallinen nickelbasierten Superlegierungen. Um dieses zu erreichen, wurde der Einfluss der Kristallorientierungen auf das Rissverhalten untersucht. Die Ergebnisse zeigen, dass die Kristallorientierung das Materialverhalten stark beeinflusst und daher berücksichtigt werden muss. Darüber hinaus wurde ein linear elastischer Rissantriebskraftparameter entwickelt, der zum Beschreiben von kristallographischen Rissen geeignet ist. Dieser Parameter basiert auf aufgelösten anisotropen Spannungsintensitätsfaktoren und ist in der Lage, die korrekte kristallographische Rissebene nach einem Übergang von einem Modus I Riss vorherzusagen. Abschließend wird in einem linear-elastisch bruchmechanischen Kontext eine Methode untersucht, die nichtelastischen Deformationen bei der Bestimmung der Rissantriebskraft zu berücksichtigen. Dazu wird aus einem Finite-Elemente Modell, welches keinen Riss aufweist und mit einem perfekt plastischen Materialmodell beschrieben wird, das Restspannungsfeld extrahiert und dem Spannungsfeld überlagert, welches aus dem Modell mit Riss unter Verwendung eines linear elastischen Materialmodells erzeugt wurde. Die Modellierung wird durch Materialtests an zwei verschiedenen Probengeometrien bei unterschiedlichen Temperaturen validiert. Dieses Lizentiat der Ingenieurwissenschaften besteht aus zwei Teilen, wobei Teil I eine Einführung und einen Hintergrund in das Forschungsgebiet gibt, während Teil II aus drei Forschungsartikeln besteht.

Modelling of Crack Growth in Single-Crystal Nickel-Base Superalloys

Modelling of Crack Growth in Single-Crystal Nickel-Base Superalloys PDF

Author: Christian Busse

Publisher: Linköping University Electronic Press

Published: 2019-09-24

Total Pages: 55

ISBN-13: 9179299830

DOWNLOAD EBOOK →

This dissertation was produced at the Division of Solid Mechanics at Linköping University and is part of a research project, which comprises modelling, microstructure investigations and material testing of cast nickel-base superalloys. The main objective of this work was to deepen the understanding of the fracture behaviour of single-crystal nickel-base superalloys and to develop a model to predict the fatigue crack growth behaviour. Frequently, crack growth in these materials has been observed to follow one of two distinct cracking modes; Mode I like cracking perpendicular to the loading direction or crystallographic crack growth on the octahedral {111}-planes, where the latter is associated with an increased fatigue crack growth rate. Thus, it is of major importance to account for this behaviour in component life prediction. Consequently, a model for the prediction of the transition of cracking modes and the correct active crystallographic plane, i.e. the crack path, and the crystallographic crack growth rate has been developed. This model is based on the evaluation of appropriate crack driving forces using three-dimensional finite-element simulations. A special focus was given towards the influence of the crystallographic orientation on the fracture behaviour. Further, a model to incorporate residual stresses in the crack growth modelling is presented. All modelling work is calibrated and validated by experiments on different specimen geometries with different crystallographic orientations. This dissertation consists of two parts, where Part I gives an introduction and background to the field of research, while Part II consists of six appended papers. Die vorliegende Dissertation wurde in der Abteilung für Festigkeitslehre an der Universität von Linköping erstellt und ist Teil eines Forschungsprojektes, welches Modellierung, Mikrostrukturuntersuchungen und Materialtests von gegossenen nickelbasierten Superlegierungen umfasst. Das Hauptziel dieser Arbeit war es, das Verständnis des Bruchverhaltens von einkristallinen Superlegierungen auf Nickelbasis zu vertiefen und ein Modell zur Vorhersage des Wachstumsverhaltens von Ermüdungsrissen zu entwickeln. Es wurde beobachtet, dass das Risswachstum in diesen Materialien einem von zwei unterschiedlichen Rissmodi folgt; Modus I Rissfortschritt senkrecht zur Belastungsrichtung oder kristallographisches Risswachstum auf den oktaedrischen f111g-Ebenen, wobei letzteres mit einer erhöhten Ermüdungsrisswachstumsrate verbunden ist. Somit ist es von grosser Bedeutung dieses Verhalten in der Lebensdauervorhersage einer Komponente zu berücksichtigen. Demzufolge wurde ein Modell für die Vorhersage des Übergangs zwischen den Rissmodi und der korrekten aktiven kristallographischen Ebene, d.h. des Risspfades, sowie der kristallographischen Risswachstumsrate erarbeitet. Dieses Modell basiert auf geeigneten Rissantriebskräften, welche mit Hilfe dreidimensionaler Finite-Elemente-Simulationen berechnet werden. Im Fokus stand insbesondere der Einuss der kristallographischen Orientierung auf das Bruchverhalten. Ausserdem wird ein Modell zur Berücksichtigung von Restspannungen in der Risswachstumsmodellierung präsentiert. Alle Modellierungsarbeiten wurden durch Experimente an verschiedenen Probengeometrien mit unterschiedlichen kristallographischen Orientierungen kalibriert und validiert. Diese Dissertation besteht aus zwei Teilen, wobei Teil I aus einer Einführung und einem Hintergrund in das Forschungsgebiet und Teil II aus sechs beigefügten Forschungsartikeln besteht.

Superalloys 2012

Superalloys 2012 PDF

Author: Eric S. Huron

Publisher: John Wiley & Sons

Published: 2012-10-02

Total Pages: 952

ISBN-13: 1118516400

DOWNLOAD EBOOK →

A superalloy, or high-performance alloy, is an alloy that exhibits excellent mechanical strength at high temperatures. Superalloy development has been driven primarily by the aerospace and power industries. This compilation of papers from the Twelfth International Symposium on Superalloys, held from September 9-13, 2012, offers the most recent technical information on this class of materials.

Numerical Modeling of Fatigue Crack Growth in Single Crystal Nickel Based Superalloys

Numerical Modeling of Fatigue Crack Growth in Single Crystal Nickel Based Superalloys PDF

Author: Ozgur Aslan

Publisher:

Published: 2010

Total Pages: 159

ISBN-13:

DOWNLOAD EBOOK →

Single crystal components operating at elevated temperatures are subjected to severe thermomechanical loading conditions. The geometry and behaviour of these components are now very complex. A major issue is to develop models to predict crack initiation and crack growth in the presence of strong stress and temperature gradients. The strongly anisotropic elastoviscoplastic behaviour of the material which is a single crystal nickel base superalloy, must be taken into account. The corresponding model should be able to account for anisotropic crack growth and crack bifurcation in complex stress elds. Moreoever the model must be capable of predicting not only the crack growth rate but also the non-straight crack paths. Anisotropic damage mechanics is a well-suited theoretical framework for the development of crack growth models in single crystals. A model coupling crystal plasticity and cyclic damage has been developed in a previous project, that shows the interest of the approach, but also its current limits, in particular the strong mesh dependence of the results. Recent development of nonlocal models within the framework of the mechanics of generalized continua could help overcoming these difficulties. A large experimental basis exists concerning initiation and crack growth in single crystal nickel base superalloys. Finite element simulations of the thermomechanics of turbine blades provide detailed information about stress and plastic strain distribution, in particular near geometrical singularities like cooling holes and slits. First of all, on the basis of crystal plasticity theory which provides a solid link between stress and plastic strains, an uncoupled damage mechanics model based on the history of FE calculations will be presented. Afterwards, an incremental damage model based on generalized continua will be proposed and model predictions for the initiation and growth of microcracks by solving the mesh dependency, will be discussed.

Effect of Dwell-times on Crack Propagation in Superalloys

Effect of Dwell-times on Crack Propagation in Superalloys PDF

Author: Jonas Saarimäki

Publisher: Linköping University Electronic Press

Published: 2015-12-10

Total Pages: 49

ISBN-13: 9176858715

DOWNLOAD EBOOK →

Gas turbines are widely used in industry for power generation and as a power source at "hard to reach" locations where other possibilities for electrical supply are insufficient. There is a strong need for greener energy, considering the effect that pollution has had on global warming, and we need to come up with ways of producing cleaner electricity. A way to achieve this is by increasing the combustion temperature in gas turbines. This increases the demand on the high temperature performance of the materials used e.g. superalloys in the turbine. These high combustion temperatures can lead to detrimental degradation of critical components. These components are commonly subjected to cyclic loading of different types e.g. combined with dwell-times and overloads at elevated temperatures, which influence the crack growth. Dwell-times have shown to accelerate crack growth and change the cracking behaviour in both Inconel 718 and Haynes 282. Overloads at the beginning of the dwell-time cycle have shown to retard the dwell time effect on crack growth in Inconel 718. To understand these effects more microstructural investigations are needed. The work presented in this licentiate thesis was conducted under the umbrella of the research program Turbo Power; "High temperature fatigue crack propagation in nickel-based superalloys", concentrating on fatigue crack growth mechanisms in superalloys during dwell-times, which have shown to have a devastating effect on the crack propagation behaviour. Mechanical testing was performed under operation-like conditions in order to achieve representative microstructures and material data for the subsequent microstructural work. The microstructures were microscopically investigated in a scanning electron microscope (SEM) using electron channeling contrast imaging (ECCI) as well as using light optical microscopy. The outcome of this work has shown that there is a significant increase in crack growth rate when dwell-times are introduced at the maximum load (0% overload) in the fatigue cycle. With the introduction of a dwell-time there is also a shift from transgranular to intergranular crack growth for both Inconel 718 and Haynes 282. When an overload is applied prior to the dwell-time, the crack growth rate decreases with increasing overload levels in Inconel 718. At high temperature crack growth in Inconel 718 took place as intergranular crack growth along grain boundaries due to oxidation and the creation of nanometric voids. Another observed growth mechanism was crack advance along phase boundaries with subsequent severe oxidation of the phase. This thesis comprises two parts. The first giving an introduction to the field of superalloys and the acting microstructural mechanisms that influence fatigue during dwell times. The second part consists of two appended papers, which report the work completed so far in the project.

Near-Threshold Crack Growth Behavior of a Single Crystal Ni-Base Superalloy Subjected to Mixed-Mode Loading

Near-Threshold Crack Growth Behavior of a Single Crystal Ni-Base Superalloy Subjected to Mixed-Mode Loading PDF

Author: D. DeLuca

Publisher:

Published: 1999

Total Pages: 17

ISBN-13:

DOWNLOAD EBOOK →

Ni-base single crystal superalloys, which are used in applications such as gas turbine engine blades, are primarily loaded along the (001) direction. Mode II (crystallographic shear) type cracking along the (111) plane is frequently the mode of growth in the early stages of fatigue failure of these components. Disks with a middle crack were used to characterize crystallographic shear crack growth from machined flaws oriented parallel to a (111) plane of a single crystal alloy. Automated crack growth experiments were conducted at constant stress ratio in the near threshold regime. Various combinations of Mode I and Mode II loading were achieved by orienting the machined flaw at different angles (?) to the loading axis. Loading angle ? = 0° (pure Mode I loading) resulted in crystallographic crack extension along alternating (111) slip systems producing a zig-zag pattern. This orientation exhibited significant resistance to self-similar crack growth from the machined flaw. In contrast, self-similar crack growth was achieved with relative ease for loading angles, ? ?0° (mixed mode). In the mixed mode tests with KI > 0, the crack growth rate was 10 to 50 times higher than that under Mode I loading. Preliminary results indicate that crack growth is non-crystallographic at 593°C.

Superalloys 2020

Superalloys 2020 PDF

Author: Sammy Tin

Publisher: Springer Nature

Published: 2020-08-28

Total Pages: 1098

ISBN-13: 3030518345

DOWNLOAD EBOOK →

The 14th International Symposium on Superalloys (Superalloys 2020) highlights technologies for lifecycle improvement of superalloys. In addition to the traditional focus areas of alloy development, processing, mechanical behavior, coatings, and environmental effects, this volume includes contributions from academia, supply chain, and product-user members of the superalloy community that highlight technologies that contribute to improving manufacturability, affordability, life prediction, and performance of superalloys.

The Superalloys

The Superalloys PDF

Author: Roger C. Reed

Publisher: Cambridge University Press

Published: 2008-07-31

Total Pages: 363

ISBN-13: 1139458639

DOWNLOAD EBOOK →

Superalloys are unique high-temperature materials used in gas turbine engines, which display excellent resistance to mechanical and chemical degradation. This book introduces the metallurgical principles which have guided their development. Suitable for graduate students and researchers, it includes exercises and additional resources at www.cambridge.org/9780521859042.

Cracks in superalloys

Cracks in superalloys PDF

Author: Jonas Saarimäki

Publisher: Linköping University Electronic Press

Published: 2018-01-18

Total Pages: 50

ISBN-13: 9176853853

DOWNLOAD EBOOK →

Gas turbines are widely used in industry for power generation and as a power source at hard to reach locations where other possibilities for electrical power supplies are insufficient. New ways of producing greener energy is needed to reduce emission levels. This can be achieved by increasing the combustion temperature of gas turbines. High combustion temperatures can be detrimental and degrade critical components. This raises the demands on the high temperature performance of the superalloys used in gas turbine components. These components are frequently subjected to different cyclic loads combined with for example dwell-times and overloads at elevated temperatures, which can influence the crack growth. Dwell-times have been shown to accelerate crack growth and change cracking behaviour in both Inconel 718, Haynes 282 and Hastelloy X. On the other hand, overloads at the beginning of a dwell-time cycle have been shown to retard the dwell-time effect on crack growth in Inconel 718. More experiments and microstructural investigations are needed to better understand these effects. The work presented in this thesis was conducted under the umbrella of the research program Turbo Power; "High temperature fatigue crack propagation in nickel-based superalloys", where I have mainly looked at fatigue crack growth mechanisms in superalloys subjected to dwell-fatigue, which can have a devastating effect on crack propagation behaviour. Mechanical testing was performed under operation-like cycles in order to achieve representative microstructures and material data for the subsequent microstructural work. Microstructures were investigated using light optical microscopy and scanning electron microscopy (SEM) techniques such as electron channeling contrast imaging (ECCI) and electron backscatter diffraction (EBSD). The outcome of this work has shown that there is a significant increase in crack growth rate when dwell-times are introduced at maximum load (0 % overload) in the fatigue cycle. With the introduction of a dwell-time there is also a shift from transgranular to intergranular crack growth for both Inconel 718 and Haynes 282. The crack growth rate decreases with increasing overload levels in Inconel 718 when an overload is applied prior to the dwell-time. At high temperature, intergranular crack growth was observed in Inconel 718 as a result of oxidation and the creation of nanometric voids. Another observed growth mechanism was crack advance along ?-phase boundaries with subsequent oxidation of the ?-phase. This thesis comprises two parts. Part I gives an introduction to the field of superalloys and the acting microstructural mechanisms related to fatigue and crack propagation. Part II consists of five appended papers, which report the work completed as part of the project.