The Architecture of High Performance Computers

The Architecture of High Performance Computers PDF

Author: IBBETT

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 177

ISBN-13: 1475767153

DOWNLOAD EBOOK →

Introduction 1. 1 Historical Developments 1 1. 2 Techniques for Improving Performance 2 1. 3 An Architectural Design Example 3 2 Instructions and Addresses 2. 1 Three-address Systems - The CDC 6600 and 7600 7 2. 2 Two-address Systems - The IBM System/360 and /370 10 2. 3 One-address Systems 12 2. 4 Zero-address Systems 15 2. 5 The MU5 Instruction Set 17 2. 6 Comparing Instruction Formats 22 3 Storage Hierarcbies 3. 1 Store Interleaving 26 3. 2 The Atlas Paging System 29 3. 3 IBM Cache Systems 33 3. 4 The MU5 Name Store 37 3. 5 Data Transfers in the MU5 Storage Hierarchy 44 4 Pipelines 4. 1 The MU5 Primary Operand Unit Pipeline 49 4. 2 Arithmetic Pipelines - The TI ASC 62 4. 3 The IBM System/360 Model 91 Common Data Bus 67 5 Instruction Buffering 5. 1 The IBM System/360 Model 195 Instruction Processor 72 5. 2 Instruction Buffering in CDC Computers 77 5. 3 The MU5 Instruction Buffer Unit 82 5. 4 The CRAY-1 Instruction Buffers 87 5. 5 Position of the Control Point 89 6 Parallel Functional Units 6. 1 The CDC 6600 Central Processor 95 6. 2 The CDC 7600 Central Processor 104 6. 3 Performance 110 6 • 4 The CRA Y-1 112 7 Vector Processors 7. 1 Vector Facilities in MU5 126 7. 2 String Operations in MU5 136 7. 3 The CDC Star-100 142 7. 4 The CDC CYBER 205 146 7.

High Performance Memory Systems

High Performance Memory Systems PDF

Author: Haldun Hadimioglu

Publisher: Springer Science & Business Media

Published: 2011-06-27

Total Pages: 298

ISBN-13: 1441989870

DOWNLOAD EBOOK →

The State of Memory Technology Over the past decade there has been rapid growth in the speed of micropro cessors. CPU speeds are approximately doubling every eighteen months, while main memory speed doubles about every ten years. The International Tech nology Roadmap for Semiconductors (ITRS) study suggests that memory will remain on its current growth path. The ITRS short-and long-term targets indicate continued scaling improvements at about the current rate by 2016. This translates to bit densities increasing at two times every two years until the introduction of 8 gigabit dynamic random access memory (DRAM) chips, after which densities will increase four times every five years. A similar growth pattern is forecast for other high-density chip areas and high-performance logic (e.g., microprocessors and application specific inte grated circuits (ASICs)). In the future, molecular devices, 64 gigabit DRAMs and 28 GHz clock signals are targeted. Although densities continue to grow, we still do not see significant advances that will improve memory speed. These trends have created a problem that has been labeled the Memory Wall or Memory Gap.

Computer Architecture

Computer Architecture PDF

Author: Joseph D. Dumas II

Publisher: CRC Press

Published: 2018-10-03

Total Pages: 386

ISBN-13: 1420057952

DOWNLOAD EBOOK →

Future computing professionals must become familiar with historical computer architectures because many of the same or similar techniques are still being used and may persist well into the future. Computer Architecture: Fundamentals and Principles of Computer Design discusses the fundamental principles of computer design and performance enhancement that have proven effective and demonstrates how current trends in architecture and implementation rely on these principles while expanding upon them or applying them in new ways. Rather than focusing on a particular type of machine, this textbook explains concepts and techniques via examples drawn from various architectures and implementations. When necessary, the author creates simplified examples that clearly explain architectural and implementation features used across many computing platforms. Following an introduction that discusses the difference between architecture and implementation and how they relate, the next four chapters cover the architecture of traditional, single-processor systems that are still, after 60 years, the most widely used computing machines. The final two chapters explore approaches to adopt when single-processor systems do not reach desired levels of performance or are not suited for intended applications. Topics include parallel systems, major classifications of architectures, and characteristics of unconventional systems of the past, present, and future. This textbook provides students with a thorough grounding in what constitutes high performance and how to measure it, as well as a full familiarity in the fundamentals needed to make systems perform better. This knowledge enables them to understand and evaluate the many new systems they will encounter throughout their professional careers.