Application of the LRFD Bridge Design Specifications to High-strength Structural Concrete

Application of the LRFD Bridge Design Specifications to High-strength Structural Concrete PDF

Author: S. H. Rizkalla

Publisher: Transportation Research Board

Published: 2007

Total Pages: 37

ISBN-13: 0309099056

DOWNLOAD EBOOK →

Explores recommended revisions to the American Association of State Highway and Transportation Officials' Load and Resistance Factor Design (LRFD) Bridge Design Specifications to extend the applicability of the flexural and compression design provisions for reinforced and prestressed concrete members to concrete strengths greater than 10 ksi.

Simplified LRFD Bridge Design

Simplified LRFD Bridge Design PDF

Author: Jai B. Kim

Publisher: CRC Press

Published: 2013-04-08

Total Pages: 361

ISBN-13: 1466566515

DOWNLOAD EBOOK →

Developed to comply with the fifth edition of the AASHTO LFRD Bridge Design Specifications [2010]––Simplified LRFD Bridge Design is "How To" use the Specifications book. Most engineering books utilize traditional deductive practices, beginning with in-depth theories and progressing to the application of theories. The inductive method in the book uses alternative approaches, literally teaching backwards. The book introduces topics by presenting specific design examples. Theories can be understood by students because they appear in the text only after specific design examples are presented, establishing the need to know theories. The emphasis of the book is on step-by-step design procedures of highway bridges by the LRFD method, and "How to Use" the AASHTO Specifications to solve design problems. Some of the design examples and practice problems covered include: Load combinations and load factors Strength limit states for superstructure design Design Live Load HL- 93 Un-factored and Factored Design Loads Fatigue Limit State and fatigue life; Service Limit State Number of design lanes Multiple presence factor of live load Dynamic load allowance Distribution of Live Loads per Lane Wind Loads, Earthquake Loads Plastic moment capacity of composite steel-concrete beam LRFR Load Rating Simplified LRFD Bridge Design is a study guide for engineers preparing for the PE examination as well as a classroom text for civil engineering students and a reference for practicing engineers. Eight design examples and three practice problems describe and introduce the use of articles, tables, and figures from the AASHTO LFRD Bridge Design Specifications. Whenever articles, tables, and figures in examples appear throughout the text, AASHTO LRFD specification numbers are also cited, so that users can cross-reference the material.

LRFD Bridge Design

LRFD Bridge Design PDF

Author: Tim Huff

Publisher: CRC Press

Published: 2022-02-23

Total Pages: 387

ISBN-13: 1000543374

DOWNLOAD EBOOK →

This book examines and explains material from the 9th edition of the AASHTO LRFD Bridge Design Specifications, including deck and parapet design, load calculations, limit states and load combinations, concrete and steel I-girder design, bearing design, and more. With increased focus on earthquake resiliency, two separate chapters– one on conventional seismic design and the other on seismic isolation applied to bridges– will fully address this vital topic. The primary focus is on steel and concrete I-girder bridges, with regard to both superstructure and substructure design. Features: Includes several worked examples for a project bridge as well as actual bridges designed by the author Examines seismic design concepts and design details for bridges Presents the latest material based on the 9th edition of the LRFD Bridge Design Specifications Covers fatigue, strength, service, and extreme event limit states Includes numerous solved problems and exercises at the end of each chapter to illustrate the concepts presented LRFD Bridge Design: Fundamentals and Applications will serve as a useful text for graduate and upper-level undergraduate civil engineering students as well as practicing structural engineers.

Design of Concrete Structures Using High-strength Steel Reinforcement

Design of Concrete Structures Using High-strength Steel Reinforcement PDF

Author: Bahram M. Shahrooz

Publisher: Transportation Research Board

Published: 2011

Total Pages: 83

ISBN-13: 030915541X

DOWNLOAD EBOOK →

TRB's National Cooperative Highway Research Program (NCHRP) Report 679: Design of Concrete Structures Using High-Strength Steel Reinforcement evaluates the existing American Association of State Highway and Transportation Officials (AASHTO) Load and Resistance Factor Design (LRFD) Bridge Design Specifications relevant to the use of high-strength reinforcing steel and other grades of reinforcing steel having no discernible yield plateau. The report also includes recommended language to the AASHTO LRFD Bridge Design Specifications that will permit the use of high-strength reinforcing steel with specified yield strengths not greater than 100 ksi. The Appendixes to NCHRP Report 679 were published online.

AASHTO LRFD Bridge Design Guide Specifications for GFRP-reinforced Concrete Bridge Decks and Traffic Railings

AASHTO LRFD Bridge Design Guide Specifications for GFRP-reinforced Concrete Bridge Decks and Traffic Railings PDF

Author:

Publisher: AASHTO

Published: 2009

Total Pages: 68

ISBN-13: 1560514582

DOWNLOAD EBOOK →

Glass fiber reinforced polymer (GFRP) materials have emerged as an alternative material for producing reinforcing bars for concrete structures. GFRP reinforcing bars offer advantages over steel reinforcement due to their noncorrosive nature and nonconductive behavior. Due to other differences in the physical and mechanical behavior of GFRP materials as opposed to steel, unique guidance on the engineering and construction of concrete bridge decks reinforced with GFRP bars is needed. These guide specifications offer a description of the unique material properties of GFRP composite materials as well as provisions for the design and construction of concrete bridge decks and railings reinforced with GFRP reinforcing bars.

High-performance/high-strength Lightweight Concrete for Bridge Girders and Decks

High-performance/high-strength Lightweight Concrete for Bridge Girders and Decks PDF

Author: Thomas E. Cousins

Publisher: Transportation Research Board

Published: 2013

Total Pages: 91

ISBN-13: 030925888X

DOWNLOAD EBOOK →

"TRB's National Cooperative Highway Research Program (NCHRP) Report 733: High-Performance/High-Strength Lightweight Concrete for Bridge Girders and Decks presents proposed changes to the American Association of State Highway and Transportation Officials' Load and Resistance Factor Design (LRFD) bridge design and construction specifications to address the use of lightweight concrete in bridge girders and decks. The proposed specifications are designed to help highway agencies evaluate between comparable designs of lightweight and normal weight concrete bridge elements so that an agency's ultimate selection will yield the greatest economic benefit. The attachments contained in the research agency's final report provide elaborations and detail on several aspects of the research. Attachments A and B provide proposed changes to AASHTO LRFD bridge design and bridge construction specifications, respectively; these are included in the print and PDF version of the report. Attachments C through R are available for download below. Attachments C, D, and E contain a detailed literature review, survey results, and a literature summary and the approved work plan, respectively. Attachment C; Attachment D ; Attachment E; Attachments F through M provide details of the experimental program that were not able to be included in the body of this report. Attachment F; Attachment G; Attachment H; Attachment I; Attachment J; Attachment K; Attachment L; Attachment M. Attachments N through Q present design examples of bridges containing lightweight concrete and details of the parametric study. Attachment N; Attachment O; Attachment P; Attachment Q. Attachment R is a detailed reference list."--Publication information.

High-performance Construction Materials: Science And Applications

High-performance Construction Materials: Science And Applications PDF

Author: Caijun Shi

Publisher: World Scientific

Published: 2008-06-11

Total Pages: 448

ISBN-13: 9814471453

DOWNLOAD EBOOK →

This book describes a number of high-performance construction materials, including concrete, steel, fiber-reinforced cement, fiber-reinforced plastics, polymeric materials, geosynthetics, masonry materials and coatings. It discusses the scientific bases for the manufacture and use of these high-performance materials. Testing and application examples are also included, in particular the application of relatively new high-performance construction materials to design practice.Most books dealing with construction materials typically address traditional materials only rather than high-performance materials and, as a consequence, do not satisfy the increasing demands of today's society. On the other hand, books dealing with materials science are not engineering-oriented, with limited coverage of the application to engineering practice. This book is thus unique in reflecting the great advances made on high-performance construction materials in recent years.This book is appropriate for use as a textbook for courses in engineering materials, structural materials and civil engineering materials at the senior undergraduate and graduate levels. It is also suitable for use by practice engineers, including construction, materials, mechanical and civil engineers.

Highway Bridge Superstructure Engineering

Highway Bridge Superstructure Engineering PDF

Author: Narendra Taly

Publisher: CRC Press

Published: 2014-11-21

Total Pages: 966

ISBN-13: 1466552182

DOWNLOAD EBOOK →

A How-To Guide for Bridge Engineers and Designers Highway Bridge Superstructure Engineering: LRFD Approaches to Design and Analysis provides a detailed discussion of traditional structural design perspectives, and serves as a state-of-the-art resource on the latest design and analysis of highway bridge superstructures. This book is applicable to highway bridges of all construction and material types, and is based on the load and resistance factor design (LRFD) philosophy. It discusses the theory of probability (with an explanation leading to the calibration process and reliability), and includes fully solved design examples of steel, reinforced and prestressed concrete bridge superstructures. It also contains step-by-step calculations for determining the distribution factors for several different types of bridge superstructures (which form the basis of load and resistance design specifications) and can be found in the AASHTO LRFD Bridge Design Specifications. Fully Realize the Basis and Significance of LRFD Specifications Divided into six chapters, this instructive text: Introduces bridge engineering as a discipline of structural design Describes numerous types of highway bridge superstructures systems Presents a detailed discussion of various types of loads that act on bridge superstructures and substructures Discusses the methods of analyses of highway bridge superstructures Includes a detailed discussion of reinforced and prestressed concrete bridges, and slab-steel girder bridges Highway Bridge Superstructure Engineering: LRFD Approaches to Design and Analysis can be used for teaching highway bridge design courses to undergraduate- and graduate-level classes, and as an excellent resource for practicing engineers.