Anisotropic and Nonlinear Optical Waveguides

Anisotropic and Nonlinear Optical Waveguides PDF

Author: C.G. Someda

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 247

ISBN-13: 0444598944

DOWNLOAD EBOOK →

Dielectric optical waveguides have been investigated for more than two decades. In the last ten years they have had the unique position of being simultaneously the backbone of a very practical and fully developed technology, as well as an extremely exciting area of basic, forefront research. Existing waveguides can be divided into two sets: one consisting of waveguides which are already in practical use, and the second of those which are still at the laboratory stage of their evolution. This book is divided into two separate parts: the first dealing with anisotropic waveguides, and the second with nonlinear behaviour. Nonlinear behaviour in optical waveguides is a topic of current research interest, an effect eagerly being sought in waveguides. The relative importance of nonlinearity versus anisotropy in theoretical papers changes enormously from problem to problem. Many theories can be quite useful and enlightening even though they neglect entirely one of the two aspects. Scientists may find their research work leading them in the near future to deal simultaneously with anisotropy and nonlinearity in order to pursue their own investigations. This book will be of interest to researchers who first need to understand the individual topics, suitably chosen from the two parts of this work, thus providing them with the necessary ingredients to pursue their explorations.

Optical Waveguides

Optical Waveguides PDF

Author: María L. Calvo

Publisher: CRC Press

Published: 2018-10-03

Total Pages: 357

ISBN-13: 1351837230

DOWNLOAD EBOOK →

Although the theory and principles of optical waveguides have been established for more than a century, the technologies have only been realized in recent decades. Optical Waveguides: From Theory to Applied Technologies combines the most relevant aspects of waveguide theory with the study of current detailed waveguiding technologies, in particular, photonic devices, telecommunication applications, and biomedical optics. With self-contained chapters written by well-known specialists, the book features both fundamentals and applications. The first three chapters examine the theoretical foundations and bases of planar optical waveguides as well as critical optical properties such as birefringence and nonlinear optical phenomena. The next several chapters focus on contemporary waveguiding technologies that include photonic devices and telecommunications. The book concludes with discussions on additional technological applications, including biomedical optical waveguides and the potential of neutron waveguides. As optical waveguides play an increasing part in modern technology, photonics will become to the 21st century what electronics were to the 20th century. Offering both novel insights for experienced professionals and introductory material for novices, this book facilitates a better understanding of the new information era—the photonics century.

Optical Waveguide Theory by the Finite Element Method

Optical Waveguide Theory by the Finite Element Method PDF

Author: Masanori Koshiba

Publisher: Springer

Published: 2012-11-07

Total Pages: 0

ISBN-13: 9789401047135

DOWNLOAD EBOOK →

Recent advances in the field of guided-wave optics, such as fiber optics and integrated optics, have included the introduction of arbitrarily-shaped optical waveguides which, in many cases, also happened to be arbitrarily inhomogeneous, dissipative, anisotropic, and/or nonlinear. Most of such cases of waveguide arbitrariness do not lend themselves to analytical so lutions; hence, computational tools for modeling and simulation are es sential for successful design, optimization, and realization of the optical waveguides. For this purpose, various numerical techniques have been de veloped. In particular, the finite element method (FEM) is a powerful and efficient tool for the most general (i. e. , arbitrarily-shaped, inhomogeneous, dissipative, anisotropic, and nonlinear) optical waveguide problem. Its use in industry and research is extensive, and indeed it could be said that with out it many optical waveguide problems would be incapable of solution. This book is intended for students, engineers, designers, and techni cal managers interested in a detailed description of the FEM for optical waveguide analysis. Starting from a brief review of electromagnetic theory, the first chapter provides the concepts of the FEM and its fundamentals. In addition to conventional elements, i. e. , line elements, triangular elements, tetrahedral elements, ring elements, and triangular ring elements which are utilized for one-dimensional, two-dimensional, three-dimensional, axisymmetric two dimensional, and axisymmetric three-dimensional problems, respectively, special-purpose elements, such as isoparametric elements, edge elements, infinite elements, and boundary elements, are also introduced.

Optical Waveguide Theory by the Finite Element Method

Optical Waveguide Theory by the Finite Element Method PDF

Author: Masanori Koshiba

Publisher: Springer

Published: 2014-01-14

Total Pages: 0

ISBN-13: 9789401116343

DOWNLOAD EBOOK →

Recent advances in the field of guided-wave optics, such as fiber optics and integrated optics, have included the introduction of arbitrarily-shaped optical waveguides which, in many cases, also happened to be arbitrarily inhomogeneous, dissipative, anisotropic, and/or nonlinear. Most of such cases of waveguide arbitrariness do not lend themselves to analytical so lutions; hence, computational tools for modeling and simulation are es sential for successful design, optimization, and realization of the optical waveguides. For this purpose, various numerical techniques have been de veloped. In particular, the finite element method (FEM) is a powerful and efficient tool for the most general (i. e. , arbitrarily-shaped, inhomogeneous, dissipative, anisotropic, and nonlinear) optical waveguide problem. Its use in industry and research is extensive, and indeed it could be said that with out it many optical waveguide problems would be incapable of solution. This book is intended for students, engineers, designers, and techni cal managers interested in a detailed description of the FEM for optical waveguide analysis. Starting from a brief review of electromagnetic theory, the first chapter provides the concepts of the FEM and its fundamentals. In addition to conventional elements, i. e. , line elements, triangular elements, tetrahedral elements, ring elements, and triangular ring elements which are utilized for one-dimensional, two-dimensional, three-dimensional, axisymmetric two dimensional, and axisymmetric three-dimensional problems, respectively, special-purpose elements, such as isoparametric elements, edge elements, infinite elements, and boundary elements, are also introduced.

Optical Waveguide Modes: Polarization, Coupling and Symmetry

Optical Waveguide Modes: Polarization, Coupling and Symmetry PDF

Author: Richard J. Black

Publisher: McGraw Hill Professional

Published: 2010-03-10

Total Pages: 206

ISBN-13: 0071629149

DOWNLOAD EBOOK →

Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product. A complete guide to optical waveguide modes This in-depth work explains how transverse optical waveguide geometry influences field distribution and polarization properties. You will gain a thorough understanding of the fundamental physics of mode structure. Optical Waveguide Modes covers single- and few-mode optical waveguides with an emphasis on single-core and multicore optical fibers and couplers, including a large range of geometries and anisotropies. Analysis is performed using extensions of the weak-guidance perturbation formalism together with elementary group representation theory. This definitive volume offers a detailed introduction to and classification of diverse forms of fundamental and higher-order modes and various polarization manifestations. Coverage includes: Electromagnetic theory for anisotropic media Weak guidance for longitudinally invariant fibers Circular isotropic longitudinally invariant fibers Azimuthal symmetry breaking Birefringence: linear, radial, and circular Multicore and multifiber couplers

Finite Element Methods for Nonlinear Optical Waveguides

Finite Element Methods for Nonlinear Optical Waveguides PDF

Author: Xin-Hua Wang

Publisher: Routledge

Published: 2019-06-14

Total Pages: 292

ISBN-13: 1351448587

DOWNLOAD EBOOK →

This book provides researchers at the forefront of nonlinear optical technologies with robust procedures and software for the systematic investigation of the fundamental phenomena in nonlinear optical waveguide structures. A full vectorial electromagnetic formulation is adopted and the conditions under which simplification to a scalar formulation is possible are clearly indicated. The need to model the dielectric saturation properly is identified, and improved algorithms are presented for obtaining the complete power dispersion curve of structures exhibiting bistability. As the stability analysis of nonlinear modes is crucial to the development of nonlinear model methods, an effective procedure to investigate the propagation of the scalar nonlinear waves in 3D is another important feature of the book. All of the procedures described, as well as an automatic mesh generator for the finite element method, are incorporated into a software package which is included with this book.

Guided Wave Nonlinear Optics

Guided Wave Nonlinear Optics PDF

Author: D.B. Ostrowsky

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 658

ISBN-13: 9401125368

DOWNLOAD EBOOK →

The object of this school, held at Cargese, Corsica (France) from August 12th to 24th 1991, was the presentation of the field of guided wave nonlinear optics in a comprehensive, coherent, and heuristic fashion. It seems appropriate that this school began with an historical introduction by Professor Nicolaas Bloembergen of Harvard, the acknowledged "father" of nonlinear optics, in general, and concluded with a round table discussion headed by Dr. Eric Spitz, the Scientific Director of a multinational electronics company interested in developing industrial applications of guided wave nonlinear optics. The lectures covered both the theoretical framework of the field and applications to basic scientific research, optical communications and technical instrumentation. Specific topics developed included materials for guided wave nonlinear optics, nonlinear interactions using integrated optical guides, nonlinear surface waves, solitons, fiber nonlinear optics, ultra-fast coupler switching as well as the related topic of fiber and integrated optical lasers and amplifiers. Lectures have also been devoted to squeezed states, chaos and strange attractors. The subjects covered by the school underlines one of the major ways in which this field has evolved over the past thirty some odd years. The path from the original experiments with materials requiring mega-watt power lasers to the recent developments in guided wave configurations using milliwatt power diode lasers is marked by the conjunction of ever improving fundamental scientific comprehension and continuing technological developments.

Waveguide Nonlinear-Optic Devices

Waveguide Nonlinear-Optic Devices PDF

Author: Toshiaki Suhara

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 330

ISBN-13: 3662108720

DOWNLOAD EBOOK →

The most comprehensive book on waveguide nonlinear optic devices, this volume presents a systematic description of the NLO field, with an emphasis on devices that use ferroelectric waveguides. It ranges from an introduction to the concepts of waveguides to the most recent experimental results.