Analysis of Biogeochemical Cycling Processes in Walker Branch Watershed

Analysis of Biogeochemical Cycling Processes in Walker Branch Watershed PDF

Author: Dale W. Johnson

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 417

ISBN-13: 146123512X

DOWNLOAD EBOOK →

The Oak Ridge National Laboratory's Environmental Sciences Division initiated the Walker Branch Watershed Project on the Oak Ridge Reservation in east Tennessee in 1967, with the support of the U. S. Department of Energy's Office of Health and Environmental Research (DOE/OHER), to quantify land-water interactions in a forested landscape. It was designed to focus on three principal objectives: (1) to develop baseline data on unpolluted ecosystems, (2) to contribute to our knowledge of cycling and loss of chemical elements in natural ecosystems, and (3) to provide the understanding necessary for the construction of mathe matical simulation models for predicting the effects of man's activities on forested landscapes. In 1969, the International Biological Program's Eastern Deciduous Forest Biome Project was initiated, and Walker Branch Watershed was chosen as one of several sites for intensive research on nutrient cycling and biological productivity. This work was supported by the National Science Foundation (NSF). Over the next 4 years, intensive process-level research on primary productivity, decomposition, and belowground biological processes was coupled with ongoing DOE-supported work on the characterization of basic geology and hydrological cycles on the watershed. In 1974, the NSF's RANN Program (Research Applied to National Needs) began work on trace element cycling on Walker Branch Wa tershed because of the extensive data base being developed under both DOE and NSF support.

Ecosystem Biogeochemistry

Ecosystem Biogeochemistry PDF

Author: Christopher S. Cronan

Publisher: Springer

Published: 2017-10-05

Total Pages: 203

ISBN-13: 3319664441

DOWNLOAD EBOOK →

This textbook presents a comprehensive process-oriented approach to biogeochemistry that is intended to appeal to readers who want to go beyond a general exposure to topics in biogeochemistry, and instead are seeking a holistic understanding of the interplay of biotic and environmental drivers in the cycling of elements in forested watersheds. The book is organized around a core set of ecosystem processes and attributes that collectively help to generate the whole-system structure and function of a terrestrial ecosystem. In the first nine chapters, a conceptual framework is developed based on distinct soil, microbial, plant, atmospheric, hydrologic, and geochemical processes that are integrated in the element cycling behavior of watershed ecosystems. With that conceptual foundation in place, students then proceed to the final three chapters where they are challenged to think critically about integrated element cycling patterns; roles for biogeochemical models; the likely impacts of disturbance, stress, and management on watershed biogeochemistry; and linkages among patterns and processes in watersheds experiencing novel environmental changes. Included with the text are figures, tables of comparative data, extensive literature citations, a glossary of terms, an index, and a set of 24 biogeochemical problems with answers. The problems are intended to support chapter concepts and to demonstrate how critical thinking skills, simple algebra, and thoughtful human logic can be used to solve applied problems in biogeochemistry that might be encountered by a research scientist or a resource manager. Using this book as an introduction to biogeochemistry, students will achieve a level of subject mastery and disciplinary perspective that will permit them to see and to interpret the individual components, interactions, and synergies that are represented in the dynamic element cycling patterns of watershed ecosystems.

Forest Ecosystems, Forest Management and the Global Carbon Cycle

Forest Ecosystems, Forest Management and the Global Carbon Cycle PDF

Author: Michael J. Apps

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 455

ISBN-13: 3642611117

DOWNLOAD EBOOK →

Globally, forest vegetation and soils are both major stores of terrestrial organic carbon, and major contributors to the annual cycling of carbon between the atmosphere and the biosphere. Forests are also a renewable resource, vital to the everyday existence of millions of people, since they provide food, shelter, fuel, raw materials and many other benefits. The combined effects of an expanding global population and increasing consumption of resources, however, may be seriously endangering both the extent and future sustainability of the world's forests. About thirty chapters cover four main themes: the role of forests in the global carbon cycle; effects of past, present and future changes in forest land use; the role of forest management, products and biomass on carbon cycling, and socio-economic impacts.

Acidic Precipitation

Acidic Precipitation PDF

Author: D.C. Adriano

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 321

ISBN-13: 1461236169

DOWNLOAD EBOOK →

"awareness" of the world's citizens and encourage governments to devote more attention and resources to address this issue. The series editors thank the international panel of contributors for bringing this timely series into completion. We also wish to acknowledge the very insightful input of the following colleagues: Prof. A.L. Page of the University of California, Prof. T.C. Hutchinson of the University of Toronto, and Dr. Steve Lindberg of the Oak Ridge National Laboratory. We also wish to thank the superb effort and cooperation of the volume editors in handling their respective volumes. The constructive criticisms of chapter review ers also deserve much appreciation. Finally, we wish to convey our appreciation to my secretary, Ms. Brenda Rosier, and my technician, Ms. Claire Carlson, for their very able assistance in various aspects of this series. Aiken, South Carolina Domy C. Adriano Coordinating Editor Preface to Acidic Precipitation, Volume 1 (Advances in Environmental Science) As a result of pioneering research in the 1960s and because of the perceived and acidic real environmental effects described during the ensuing years, the terms rain, acidic deposition, or acidic precipitation have become commonplace in the scientific and popular literature. In the last decade, governments throughout the world have responded to public pressure and to the concerns of the scientific community by establishing research programs on national and international scales.

Ecology

Ecology PDF

Author: Robert E. Ricklefs

Publisher: Macmillan

Published: 2000

Total Pages: 880

ISBN-13: 9780716728290

DOWNLOAD EBOOK →

See publisher description:

North American Temperate Deciduous Forest Responses to Changing Precipitation Regimes

North American Temperate Deciduous Forest Responses to Changing Precipitation Regimes PDF

Author: Paul Hanson

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 487

ISBN-13: 1461300215

DOWNLOAD EBOOK →

Large-scale experimentation allows scientists to test the specific responses of ecosystems to changing environmental conditions. Researchers at Oak Ridge National Laboratory together with other Federal and University scientists conducted a large-scale climatic change experiment at the Walker Branch Watershed in Tennessee, a model upland hardwood forest in North America. This volume synthesizes mechanisms of forest ecosystem response to changing hydrologic budgets associated with climatic change drivers. The authors explain the implications of changes at both the plant and stand levels, and they extrapolate the data to ecosystem-level responses, such as changes in nutrient cycling, biodiversity and carbon sequestration. In analyzing data, they also discuss similarities and differences with other temperate deciduous forests. Source data for the experiment has been archived by the authors in the U.S. Department of Energy's Carbon Dioxide Information and Analysis Center (CDIAC) for future analysis and modeling by independent investigators.