Titanium Carbide MXenes

Titanium Carbide MXenes PDF

Author: Muhammad Tahir

Publisher: John Wiley & Sons

Published: 2023-12-29

Total Pages: 262

ISBN-13: 3527838694

DOWNLOAD EBOOK →

Titanium Carbide MXenes Discover the future of solar energy with this introduction to an essential new family of materials MXenes are a recently-discovered family of two-dimensional organic compounds formed from transition metal carbides. Their unique properties, such as high stability and electron conductivity, have made them a sought-after commodity with many industrial applications in cutting-edge industries. In particular, titanium carbide MXenes look poised to have significant applications in the solar energy industry, with potentially revolutionary consequences for the sustainable energy future. Titanium Carbide MXenes offers a thorough and accessible introduction to this family of compounds and their possible applications. It begins by surveying the fundamentals of the MXene groups, before characterizing titanium carbide MXenes and their processes of synthesis. It then moves on to discuss applications, current and future. The result is a must-read for researchers and professionals looking to synthesize and construct these materials and apply them in sustainable industry. Titanium Carbide MXenes readers will also find: Detailed treatment of MXenes including nitrides composites, perovskites composites, and more Discusses applications in photocatalytic CO2 reduction, hydrogen production, water splitting, and more Roughly 100 figures illustrating key concepts Titanium Carbide MXenes is a must-have for materials scientists, catalytic chemists, and scientists in industry.

A Theoretical and Experimental Study of Self-propagating High- Temperature Synthesis of Titanium Carbide

A Theoretical and Experimental Study of Self-propagating High- Temperature Synthesis of Titanium Carbide PDF

Author: Ziaul Huque

Publisher:

Published: 1991

Total Pages: 390

ISBN-13:

DOWNLOAD EBOOK →

Self-propagating high-temperature synthesis (SHS) is a new method of producing advanced ceramic materials and offers an attractive alternative to conventional methods of materials processing. An experimental investigation was carried out to determine the SHS reaction wave propagation speed in a vertical cylindrical compact made from a mixture of titanium and graphite powders. Ignition was accomplished by radiatively heating the top surface of the cylinder by resistively heated tungsten heating coils. Syntheses were carried out in inert argon environment and under atmospheric pressure. Propagation speeds were determined by analyzing the temperature distribution with time at two locations at known axial distance. Effects of various system parameters, such as, density and diameter of the initial compact, different mixing ratios of the reactants and dilution with product, on reaction propagation speed were determined. A numerical model was also developed to predict the propagation speed. A two-dimensional formulation was adopted with both radiative and natural convective heat loss from the periphery of the cylindrical compact using constant values of properties and kinetic parameters. Two different kinetic models describing the reactions involving solids are employed to calculate the wave speed using a finite difference scheme. The calculated results were compared with the experimental data. Trends of the results with Kanury kinetic model were found to be in better agreement with the experiments. Results showed no significant effect of heat loss on the propagation speed within a practical range of compact diameter. Quenching conditions of the reaction for titanium rich and carbon rich cases and also for the case of dilution with the product were identified. Variation of propagation speed with sample initial density showed a maximum value at densities between 2.1 gm/cm3 and 2.2 gm/cm3. During the synthesis, the samples were found to expand axially. Hence the final product obtained was highly porous with densities below 50% of the density of TiC.