An Introduction to Mathematical Relativity

An Introduction to Mathematical Relativity PDF

Author: José Natário

Publisher: Springer Nature

Published: 2021-03-24

Total Pages: 186

ISBN-13: 3030656837

DOWNLOAD EBOOK →

This concise textbook introduces the reader to advanced mathematical aspects of general relativity, covering topics like Penrose diagrams, causality theory, singularity theorems, the Cauchy problem for the Einstein equations, the positive mass theorem, and the laws of black hole thermodynamics. It emerged from lecture notes originally conceived for a one-semester course in Mathematical Relativity which has been taught at the Instituto Superior Técnico (University of Lisbon, Portugal) since 2010 to Masters and Doctorate students in Mathematics and Physics. Mostly self-contained, and mathematically rigorous, this book can be appealing to graduate students in Mathematics or Physics seeking specialization in general relativity, geometry or partial differential equations. Prerequisites include proficiency in differential geometry and the basic principles of relativity. Readers who are familiar with special relativity and have taken a course either in Riemannian geometry (for students of Mathematics) or in general relativity (for those in Physics) can benefit from this book.

An Introduction to General Relativity

An Introduction to General Relativity PDF

Author: L. P. Hughston

Publisher: Cambridge University Press

Published: 1990

Total Pages: 196

ISBN-13: 9780521339438

DOWNLOAD EBOOK →

This textbook provides an introduction to general relativity for mathematics undergraduates or graduate physicists. After a review of Cartesian tensor notation and special relativity the concepts of Riemannian differential geometry are introducted. More emphasis is placed on an intuitive grasp of the subject and a calculational facility than on a rigorous mathematical exposition. General relativity is then presented as a relativistic theory of gravity reducing in the appropriate limits to Newtonian gravity or special relativity. The Schwarzchild solution is derived and the gravitational red-shift, time dilation and classic tests of general relativity are discussed. There is a brief account of gravitational collapse and black holes based on the extended Schwarzchild solution. Other vacuum solutions are described, motivated by their counterparts in linearised general relativity. The book ends with chapters on cosmological solutions to the field equations. There are exercises attached to each chapter, some of which extend the development given in the text.

Spacetime and Geometry

Spacetime and Geometry PDF

Author: Sean M. Carroll

Publisher: Cambridge University Press

Published: 2019-08-08

Total Pages: 529

ISBN-13: 1108488390

DOWNLOAD EBOOK →

An accessible introductory textbook on general relativity, covering the theory's foundations, mathematical formalism and major applications.

General Relativity

General Relativity PDF

Author: N.M.J. Woodhouse

Publisher: Springer Science & Business Media

Published: 2007-03-06

Total Pages: 218

ISBN-13: 1846284872

DOWNLOAD EBOOK →

Based on a course taught for years at Oxford, this book offers a concise exposition of the central ideas of general relativity. The focus is on the chain of reasoning that leads to the relativistic theory from the analysis of distance and time measurements in the presence of gravity, rather than on the underlying mathematical structure. Includes links to recent developments, including theoretical work and observational evidence, to encourage further study.

The Geometry of Spacetime

The Geometry of Spacetime PDF

Author: James J. Callahan

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 474

ISBN-13: 1475767366

DOWNLOAD EBOOK →

Hermann Minkowski recast special relativity as essentially a new geometric structure for spacetime. This book looks at the ideas of both Einstein and Minkowski, and then introduces the theory of frames, surfaces and intrinsic geometry, developing the main implications of Einstein's general relativity theory.

General Relativity Without Calculus

General Relativity Without Calculus PDF

Author: Jose Natario

Publisher: Springer Science & Business Media

Published: 2011-07-30

Total Pages: 133

ISBN-13: 3642214525

DOWNLOAD EBOOK →

“General Relativity Without Calculus” offers a compact but mathematically correct introduction to the general theory of relativity, assuming only a basic knowledge of high school mathematics and physics. Targeted at first year undergraduates (and advanced high school students) who wish to learn Einstein’s theory beyond popular science accounts, it covers the basics of special relativity, Minkowski space-time, non-Euclidean geometry, Newtonian gravity, the Schwarzschild solution, black holes and cosmology. The quick-paced style is balanced by over 75 exercises (including full solutions), allowing readers to test and consolidate their understanding.

Gravity

Gravity PDF

Author: James B. Hartle

Publisher: Cambridge University Press

Published: 2021-06-24

Total Pages: 610

ISBN-13: 1009051334

DOWNLOAD EBOOK →

Renowned relativist James Hartle's fluent and accessible physics-first introduction to general relativity uses minimal new mathematics and begins with the essential physical applications. This ground-breaking text, reissued by Cambridge University Press, makes this fundamental theory accessible to virtually all physics majors.

General Relativity for Mathematicians

General Relativity for Mathematicians PDF

Author: R.K. Sachs

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 302

ISBN-13: 1461299039

DOWNLOAD EBOOK →

This is a book about physics, written for mathematicians. The readers we have in mind can be roughly described as those who: I. are mathematics graduate students with some knowledge of global differential geometry 2. have had the equivalent of freshman physics, and find popular accounts of astrophysics and cosmology interesting 3. appreciate mathematical elarity, but are willing to accept physical motiva tions for the mathematics in place of mathematical ones 4. are willing to spend time and effort mastering certain technical details, such as those in Section 1. 1. Each book disappoints so me readers. This one will disappoint: 1. physicists who want to use this book as a first course on differential geometry 2. mathematicians who think Lorentzian manifolds are wholly similar to Riemannian ones, or that, given a sufficiently good mathematical back ground, the essentials of a subject !ike cosmology can be learned without so me hard work on boring detaiis 3. those who believe vague philosophical arguments have more than historical and heuristic significance, that general relativity should somehow be "proved," or that axiomatization of this subject is useful 4. those who want an encyclopedic treatment (the books by Hawking-Ellis [1], Penrose [1], Weinberg [1], and Misner-Thorne-Wheeler [I] go further into the subject than we do; see also the survey article, Sachs-Wu [1]). 5. mathematicians who want to learn quantum physics or unified fieId theory (unfortunateIy, quantum physics texts all seem either to be for physicists, or merely concerned with formaI mathematics).

A Mathematical Introduction To General Relativity

A Mathematical Introduction To General Relativity PDF

Author: Amol Sasane

Publisher: World Scientific

Published: 2021-08-10

Total Pages: 500

ISBN-13: 9811243794

DOWNLOAD EBOOK →

The book aims to give a mathematical presentation of the theory of general relativity (that is, spacetime-geometry-based gravitation theory) to advanced undergraduate mathematics students. Mathematicians will find spacetime physics presented in the definition-theorem-proof format familiar to them. The given precise mathematical definitions of physical notions help avoiding pitfalls, especially in the context of spacetime physics describing phenomena that are counter-intuitive to everyday experiences.In the first part, the differential geometry of smooth manifolds, which is needed to present the spacetime-based gravitation theory, is developed from scratch. Here, many of the illustrating examples are the Lorentzian manifolds which later serve as spacetime models. This has the twofold purpose of making the physics forthcoming in the second part relatable, and the mathematics learnt in the first part less dry. The book uses the modern coordinate-free language of semi-Riemannian geometry. Nevertheless, to familiarise the reader with the useful tool of coordinates for computations, and to bridge the gap with the physics literature, the link to coordinates is made through exercises, and via frequent remarks on how the two languages are related.In the second part, the focus is on physics, covering essential material of the 20th century spacetime-based view of gravity: energy-momentum tensor field of matter, field equation, spacetime examples, Newtonian approximation, geodesics, tests of the theory, black holes, and cosmological models of the universe.Prior knowledge of differential geometry or physics is not assumed. The book is intended for self-study, and the solutions to the (over 200) exercises are included.

Introduction to Geometry and Relativity

Introduction to Geometry and Relativity PDF

Author: David C. Mello

Publisher: Nova Science Publishers

Published: 2013

Total Pages: 0

ISBN-13: 9781626185425

DOWNLOAD EBOOK →

This book provides a lucid introduction to both modern differential geometry and relativity for advanced undergraduates and first-year graduate students of applied mathematics and physical sciences. This book meets an overwhelming need for a book on modern differential geometry and relativity that is student-friendly, and which is also suitable for self-study. The book presumes a minimal level of mathematical maturity so that any student who has completed the standard Calculus sequence should be able to read and understand the book. The key features of the book are: Detailed solutions are provided to the Exercises in each chapter; Many of the missing steps that are often omitted from standard mathematical derivations have been provided to make the book easier to read and understand; A detailed introduction to Electrodynamics is provided so that the book is accessible to students who have not had a formal course in this area; In its treatment of modern differential geometry, the book employs both a modern, co-ordinate-free approach, and the standard co-ordinate-based approach. This makes the book attractive to a large audience of readers.Also, the book is particularly attractive to professional non-specialists who would like an easy to read introduction to the subject.