An Introduction to Electronic Materials for Engineers

An Introduction to Electronic Materials for Engineers PDF

Author: Wei Gao

Publisher: World Scientific

Published: 2011

Total Pages: 563

ISBN-13: 9814293695

DOWNLOAD EBOOK →

Presents an overview of various materials, such as conducting materials, semiconductors, magnetic materials, optical materials, dielectric materials, superconductors, thermoelectric materials and ionic materials. This title includes chapters on thin film electronic materials, organic electronic materials and nanostructured materials.

An Introduction to Electronic Materials for Engineers

An Introduction to Electronic Materials for Engineers PDF

Author: Wei Gao (Ph. D.)

Publisher:

Published: 2011

Total Pages:

ISBN-13: 9789814293716

DOWNLOAD EBOOK →

An Introduction to Electronic Materials for Engineers aims to give a basic understanding and comprehensive overview of a wide range of materials, such as conducting materials, semiconductors, magnetic materials, optical materials, dielectric materials, superconductors, thermoelectric materials and ionic materials. The new chapters added into this latest edition include thin film electronic materials, organic electronic materials and nanostructured materials. These chapters aim to reflect the new developments made in electronic materials and nanotechnology research towards the design and fabrication of modern equipment and electronic devices. This book is designed for undergraduate engineering and technology students who have background knowledge of physics and chemistry, as well as for engineers who work on materials processing or application, or electric/electronic engineering. It emphasizes on the synthesis, performance and application of electronic materials and will enable readers to understand and relate to the devices and materials. -- Book Description.

Introduction to Electronic Materials and Devices

Introduction to Electronic Materials and Devices PDF

Author: Sergio M. Rezende

Publisher: Springer Nature

Published: 2022-01-18

Total Pages: 517

ISBN-13: 3030817725

DOWNLOAD EBOOK →

This textbook lays out the fundamentals of electronic materials and devices on a level that is accessible to undergraduate engineering students with no prior coursework in electromagnetism and modern physics. The initial chapters present the basic concepts of waves and quantum mechanics, emphasizing the underlying physical concepts behind the properties of materials and the basic principles of device operation. Subsequent chapters focus on the fundamentals of electrons in materials, covering basic physical properties and conduction mechanisms in semiconductors and their use in diodes, transistors, and integrated circuits. The book also deals with a broader range of modern topics, including magnetic, spintronic, and superconducting materials and devices, optoelectronic and photonic devices, as well as the light emitting diode, solar cells, and various types of lasers. The last chapter presents a variety of materials with specific novel applications, such as dielectric materials used in electronics and photonics, liquid crystals, and organic conductors used in video displays, and superconducting devices for quantum computing. Clearly written with compelling illustrations and chapter-end problems, Rezende’s Introduction to Electronic Materials and Devices is the ideal accompaniment to any undergraduate program in electrical and computer engineering. Adjacent students specializing in physics or materials science will also benefit from the timely and extensive discussion of the advanced devices, materials, and applications that round out this engaging and approachable textbook.

Electronic Properties of Materials

Electronic Properties of Materials PDF

Author: Rolf E. Hummel

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 323

ISBN-13: 3662024241

DOWNLOAD EBOOK →

The present book on electrical, optical, magnetic and thermal properties of materials is in many aspects different from other introductory texts in solid state physics. First of all, this book is written for engineers, particularly materials and electrical engineers who want to gain a fundamental under standing of semiconductor devices, magnetic materials, lasers, alloys, etc. Second, it stresses concepts rather than mathematical formalism, which should make the presentation relatively easy to understand. Thus, this book provides a thorough preparation for advanced texts, monographs, or special ized journal articles. Third, this book is not an encyclopedia. The selection oftopics is restricted to material which is considered to be essential and which can be covered in a 15-week semester course. For those professors who want to teach a two-semester course, supplemental topics can be found which deepen the understanding. (These sections are marked by an asterisk [*]. ) Fourth, the present text leaves the teaching of crystallography, X-ray diffrac tion, diffusion, lattice defects, etc. , to those courses which specialize in these subjects. As a rule, engineering students learn this material at the beginning of their upper division curriculum. The reader is, however, reminded of some of these topics whenever the need arises. Fifth, this book is distinctly divided into five self-contained parts which may be read independently.

Introduction to the Electronic Properties of Materials

Introduction to the Electronic Properties of Materials PDF

Author: David C. Jiles

Publisher: CRC Press

Published: 2017-12-21

Total Pages: 623

ISBN-13: 135198988X

DOWNLOAD EBOOK →

Electronic materials provide the basis for many high tech industries that have changed rapidly in recent years. In this fully revised and updated second edition, the author discusses the range of available materials and their technological applications. Introduction to the Electronic Properties of Materials, 2nd Edition presents the principles of the behavior of electrons in materials and develops a basic understanding with minimal technical detail. Broadly based, it touches on all of the key issues in the field and offers a multidisciplinary approach spanning physics, electrical engineering, and materials science. It provides an understanding of the behavior of electrons within materials, how electrons determine the magnetic thermal, optical and electrical properties of materials, and how electronic properties are controlled for use in technological applications. Although some mathematics is essential in this area, the mathematics that is used is easy to follow and kept to an appropriate level for the reader. An excellent introductory text for undergraduate students, this book is a broad introduction to the topic and provides a careful balance of information that will be appropriate for physicists, materials scientists, and electrical engineers.

An Introduction to Electronic and Ionic Materials

An Introduction to Electronic and Ionic Materials PDF

Author: Wei Gao

Publisher: World Scientific

Published: 1999

Total Pages: 392

ISBN-13: 9789810234737

DOWNLOAD EBOOK →

The subject of electronic and ionic materials has grown rapidly over the last 20 to 30 years. The application of these materials has had a significant impact on modern industries and on society in general. The subject is so important that no electrical engineering, materials science and engineering, applied physics or chemistry degree would be complete without it. This valuable textbook is aimed at engineering and technology undergraduates who have a background in physics or chemistry only at first year level. It provides a basic understanding of the properties and uses of a wide range of electrically and ionically conducting materials. It is not intended to be a solid state physics or chemistry book, and so the mathematics is kept to a minimum. However, it is intended to give the student an overview of a wide range of electrical materials and their uses in today's society.

Electronic Properties of Materials

Electronic Properties of Materials PDF

Author: Rolf E. Hummel

Publisher: Springer

Published: 2013-11-11

Total Pages: 412

ISBN-13: 9401749140

DOWNLOAD EBOOK →

It is quite satisfying for an author to learn that his brainchild has been favorably accepted by students as well as by professors and thus seems to serve some useful purpose. This horizontally integrated text on the electronic properties of metals, alloys, semiconductors, insulators, ceramics, and poly meric materials has been adopted by many universities in the United States as well as abroad, probably because of the relative ease with which the material can be understood. The book has now gone through several re printing cycles (among them a few pirate prints in Asian countries). I am grateful to all readers for their acceptance and for the many encouraging comments which have been received. I have thought very carefully about possible changes for the second edition. There is, of course, always room for improvement. Thus, some rewording, deletions, and additions have been made here and there. I withstood, how ever, the temptation to expand considerably the book by adding completely new subjects. Nevertheless, a few pages on recent developments needed to be inserted. Among them are, naturally, the discussion of ceramic (high-tempera ture) superconductors, and certain elements of the rapidly expanding field of optoelectronics. Further, I felt that the readers might be interested in learning some more practical applications which result from the physical concepts which have been treated here.

Smart Electronic Materials

Smart Electronic Materials PDF

Author: Jasprit Singh

Publisher: Cambridge University Press

Published: 2005-03-03

Total Pages: 440

ISBN-13: 9780521850278

DOWNLOAD EBOOK →

This graduate text explains the physical properties and applications of a wide range of smart materials.

Introduction to the Electronic Properties of Materials

Introduction to the Electronic Properties of Materials PDF

Author: David Jiles

Publisher: Springer

Published: 1994-05-15

Total Pages: 372

ISBN-13: 9780412495809

DOWNLOAD EBOOK →

The subject of electronics, and in particular the electronic properties of materials, is one which has experienced unprecedented growth in the last thirty years. The discovery of the transistor and the subsequent development of integrated circuits has enabled us to manipulate and control the electronic properties of materials to such an extent that the entire telecommunications and computer industries are dependent on the electronic properties of a few semiconducting materials. The subject area is now so important that no modern physics, materials science or electrical engineering degree programme can be considered complete without a significant lecture course in electronic materials. Ultimately the course requirements of these three groups of students may be quite different, but at the initial stages of the discussion of electronic properties of materials, the course requirements are broadly identical for each of these groups. Furthermore, as the subject continues to grow in importance, the initial teaching of this vital subject needs to occur earlier in the curriculum in order to give the students sufficient time later to cover the increasing amount of material.