An Introduction to Differential Equations Using MATLAB

An Introduction to Differential Equations Using MATLAB PDF

Author: Rizwan Butt

Publisher:

Published: 2016

Total Pages: 0

ISBN-13: 9781783322237

DOWNLOAD EBOOK →

An Introduction to Differential Equations using MATLAB exploits the symbolic, numerical, and graphical capabilities of MATLAB to develop a thorough understanding of differential equations algorithms.

Introduction to Numerical Ordinary and Partial Differential Equations Using MATLAB

Introduction to Numerical Ordinary and Partial Differential Equations Using MATLAB PDF

Author: Alexander Stanoyevitch

Publisher: Wiley-Interscience

Published: 2005

Total Pages: 868

ISBN-13:

DOWNLOAD EBOOK →

Learn how to solve complex differential equations using MATLAB® Introduction to Numerical Ordinary and Partial Differential Equations Using MATLAB® teaches readers how to numerically solve both ordinary and partial differential equations with ease. This innovative publication brings together a skillful treatment of MATLAB and programming alongside theory and modeling. By presenting these topics in tandem, the author enables and encourages readers to perform their own computer experiments, leading them to a more profound understanding of differential equations. The text consists of three parts: Introduction to MATLAB and numerical preliminaries, which introduces readers to the software and itsgraphical capabilities and shows how to use it to write programs Ordinary Differential Equations Partial Differential Equations All the tools needed to master using MATLAB to solve differential equations are provided and include: "Exercises for the Reader" that range from routine computations to more advanced conceptual and theoretical questions (solutions appendix included) Illustrative examples, provided throughout the text, that demonstrate MATLAB's powerful ability to solve differential equations Explanations that are rigorous, yet written in a very accessible, user-friendly style Access to an FTP site that includes downloadable files of all the programs developed in the text This textbook can be tailored for courses in numerical differential equations and numerical analysis as well as traditional courses in ordinary and/or partial differential equations. All the material has been classroom-tested over the course of many years, with the result that any self-learner with an understanding of basic single-variable calculus can master this topic. Systematic use is made of MATLAB's superb graphical capabilities to display and analyze results. An extensive chapter on the finite element method covers enough practical aspects (including mesh generation) to enable the reader to numerically solve general elliptic boundary value problems. With its thorough coverage of analytic concepts, geometric concepts, programs and algorithms, and applications, this is an unsurpassed pedagogical tool.

Differential Equations and Linear Algebra

Differential Equations and Linear Algebra PDF

Author: Gilbert Strang

Publisher: Wellesley-Cambridge Press

Published: 2015-02-12

Total Pages: 0

ISBN-13: 9780980232790

DOWNLOAD EBOOK →

Differential equations and linear algebra are two central topics in the undergraduate mathematics curriculum. This innovative textbook allows the two subjects to be developed either separately or together, illuminating the connections between two fundamental topics, and giving increased flexibility to instructors. It can be used either as a semester-long course in differential equations, or as a one-year course in differential equations, linear algebra, and applications. Beginning with the basics of differential equations, it covers first and second order equations, graphical and numerical methods, and matrix equations. The book goes on to present the fundamentals of vector spaces, followed by eigenvalues and eigenvectors, positive definiteness, integral transform methods and applications to PDEs. The exposition illuminates the natural correspondence between solution methods for systems of equations in discrete and continuous settings. The topics draw on the physical sciences, engineering and economics, reflecting the author's distinguished career as an applied mathematician and expositor.

An Introduction to Partial Differential Equations with MATLAB

An Introduction to Partial Differential Equations with MATLAB PDF

Author: Matthew P. Coleman

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 670

ISBN-13: 1439898472

DOWNLOAD EBOOK →

An Introduction to Partial Differential Equations with MATLAB, Second Edition illustrates the usefulness of PDEs through numerous applications and helps students appreciate the beauty of the underlying mathematics. Updated throughout, this second edition of a bestseller shows students how PDEs can model diverse problems, including the flow of heat,

Linear Algebra and Differential Equations Using MATLAB

Linear Algebra and Differential Equations Using MATLAB PDF

Author: Martin Golubitsky

Publisher: Cengage Learning

Published: 1999-01

Total Pages: 704

ISBN-13: 9780534354251

DOWNLOAD EBOOK →

These world-renowned authors integrate linear algebra and ordinary differential equations in this unique book, interweaving instructions on how to use MATLAB® with examples and theory. They use computers in two ways: in linear algebra, computers reduce the drudgery of calculations to help students focus on concepts and methods; in differential equations, computers display phase portraits graphically for students to focus on the qualitative information embodied in solutions, rather than just to learn to develop formulas for solutions.

Computational Partial Differential Equations Using MATLAB

Computational Partial Differential Equations Using MATLAB PDF

Author: Jichun Li

Publisher: CRC Press

Published: 2008-10-20

Total Pages: 376

ISBN-13: 1420089056

DOWNLOAD EBOOK →

This textbook introduces several major numerical methods for solving various partial differential equations (PDEs) in science and engineering, including elliptic, parabolic, and hyperbolic equations. It covers traditional techniques that include the classic finite difference method and the finite element method as well as state-of-the-art numerical

Introduction to Partial Differential Equations with MATLAB

Introduction to Partial Differential Equations with MATLAB PDF

Author: Jeffery M. Cooper

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 549

ISBN-13: 1461217547

DOWNLOAD EBOOK →

Overview The subject of partial differential equations has an unchanging core of material but is constantly expanding and evolving. The core consists of solution methods, mainly separation of variables, for boundary value problems with constant coeffi cients in geometrically simple domains. Too often an introductory course focuses exclusively on these core problems and techniques and leaves the student with the impression that there is no more to the subject. Questions of existence, uniqueness, and well-posedness are ignored. In particular there is a lack of connection between the analytical side of the subject and the numerical side. Furthermore nonlinear problems are omitted because they are too hard to deal with analytically. Now, however, the availability of convenient, powerful computational software has made it possible to enlarge the scope of the introductory course. My goal in this text is to give the student a broader picture of the subject. In addition to the basic core subjects, I have included material on nonlinear problems and brief discussions of numerical methods. I feel that it is important for the student to see nonlinear problems and numerical methods at the beginning of the course, and not at the end when we run usually run out of time. Furthermore, numerical methods should be introduced for each equation as it is studied, not lumped together in a final chapter.

Solving ODEs with MATLAB

Solving ODEs with MATLAB PDF

Author: Lawrence F. Shampine

Publisher: Cambridge University Press

Published: 2003-04-28

Total Pages: 276

ISBN-13: 9780521530941

DOWNLOAD EBOOK →

This concise text, first published in 2003, is for a one-semester course for upper-level undergraduates and beginning graduate students in engineering, science, and mathematics, and can also serve as a quick reference for professionals. The major topics in ordinary differential equations, initial value problems, boundary value problems, and delay differential equations, are usually taught in three separate semester-long courses. This single book provides a sound treatment of all three in fewer than 300 pages. Each chapter begins with a discussion of the 'facts of life' for the problem, mainly by means of examples. Numerical methods for the problem are then developed, but only those methods most widely used. The treatment of each method is brief and technical issues are minimized, but all the issues important in practice and for understanding the codes are discussed. The last part of each chapter is a tutorial that shows how to solve problems by means of small, but realistic, examples.

Differential Equations with MATLAB

Differential Equations with MATLAB PDF

Author: Mark McKibben

Publisher: CRC Press

Published: 2014-09-08

Total Pages: 500

ISBN-13: 1466557079

DOWNLOAD EBOOK →

A unique textbook for an undergraduate course on mathematical modeling, Differential Equations with MATLAB: Exploration, Applications, and Theory provides students with an understanding of the practical and theoretical aspects of mathematical models involving ordinary and partial differential equations (ODEs and PDEs). The text presents a unifying picture inherent to the study and analysis of more than 20 distinct models spanning disciplines such as physics, engineering, and finance. The first part of the book presents systems of linear ODEs. The text develops mathematical models from ten disparate fields, including pharmacokinetics, chemistry, classical mechanics, neural networks, physiology, and electrical circuits. Focusing on linear PDEs, the second part covers PDEs that arise in the mathematical modeling of phenomena in ten other areas, including heat conduction, wave propagation, fluid flow through fissured rocks, pattern formation, and financial mathematics. The authors engage students by posing questions of all types throughout, including verifying details, proving conjectures of actual results, analyzing broad strokes that occur within the development of the theory, and applying the theory to specific models. The authors’ accessible style encourages students to actively work through the material and answer these questions. In addition, the extensive use of MATLAB® GUIs allows students to discover patterns and make conjectures.

Differential Equation Solutions with MATLAB®

Differential Equation Solutions with MATLAB® PDF

Author: Dingyü Xue

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2020-04-06

Total Pages: 417

ISBN-13: 3110675315

DOWNLOAD EBOOK →

This book focuses the solutions of differential equations with MATLAB. Analytical solutions of differential equations are explored first, followed by the numerical solutions of different types of ordinary differential equations (ODEs), as well as the universal block diagram based schemes for ODEs. Boundary value ODEs, fractional-order ODEs and partial differential equations are also discussed.